

Beautiful Testing

Edited by Tim Riley and Adam Goucher

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Beautiful Testing
Edited by Tim Riley and Adam Goucher

Copyright © 2010 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/

institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sarah Schneider
Copyeditor: Genevieve d’Entremont
Proofreader: Sarah Schneider

Indexer: John Bickelhaupt
Cover Designer: Mark Paglietti
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
October 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Beautiful Testing, the image of

a beetle, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-15981-8

[V]

1255122093

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

All royalties from this book will be donated to the
UN Foundation’s Nothing But Nets campaign to
save lives by preventing malaria, a disease that
kills millions of children in Africa each year.

C O N T E N T S

PREFACE xiii
by Adam Goucher

Part One BEAUTIFUL TESTERS

1 WAS IT GOOD FOR YOU? 3
by Linda Wilkinson

2 BEAUTIFUL TESTING SATISFIES STAKEHOLDERS 15
by Rex Black

For Whom Do We Test? 16
What Satisfies? 18
What Beauty Is External? 20
What Beauty Is Internal? 23
Conclusions 25

3 BUILDING OPEN SOURCE QA COMMUNITIES 27
by Martin Schröder and Clint Talbert

Communication 27
Volunteers 28
Coordination 29
Events 32
Conclusions 35

4 COLLABORATION IS THE CORNERSTONE OF BEAUTIFUL PERFORMANCE TESTING 37
by Scott Barber

Setting the Stage 38
100%?!? Fail 38
The Memory Leak That Wasn’t 45
Can’t Handle the Load? Change the UI 46
It Can’t Be the Network 48
Wrap-Up 51

Part Two BEAUTIFUL PROCESS

5 JUST PEACHY: MAKING OFFICE SOFTWARE MORE RELIABLE WITH FUZZ TESTING 55
by Kamran Khan

User Expectations 55
What Is Fuzzing? 57
Why Fuzz Test? 57

vii

Fuzz Testing 60
Future Considerations 65

6 BUG MANAGEMENT AND TEST CASE EFFECTIVENESS 67
by Emily Chen and Brian Nitz

Bug Management 68
The First Step in Managing a Defect Is Defining It 70
Test Case Effectiveness 77
Case Study of the OpenSolaris Desktop Team 79
Conclusions 83
Acknowledgments 83
References 84

7 BEAUTIFUL XMPP TESTING 85
by Remko Tronçon

Introduction 85
XMPP 101 86
Testing XMPP Protocols 88
Unit Testing Simple Request-Response Protocols 89
Unit Testing Multistage Protocols 94
Testing Session Initialization 97
Automated Interoperability Testing 99
Diamond in the Rough: Testing XML Validity 101
Conclusions 101
References 102

8 BEAUTIFUL LARGE-SCALE TEST AUTOMATION 103
by Alan Page

Before We Start 104
What Is Large-Scale Test Automation? 104
The First Steps 106
Automated Tests and Test Case Management 107
The Automated Test Lab 111
Test Distribution 112
Failure Analysis 114
Reporting 114
Putting It All Together 116

9 BEAUTIFUL IS BETTER THAN UGLY 119
by Neal Norwitz, Michelle Levesque, and Jeffrey Yasskin

The Value of Stability 120
Ensuring Correctness 121
Conclusions 127

10 TESTING A RANDOM NUMBER GENERATOR 129
by John D. Cook

What Makes Random Number Generators Subtle to Test? 130
Uniform Random Number Generators 131

viii C O N T E N T S

Nonuniform Random Number Generators 132
A Progression of Tests 134
Conclusions 141

11 CHANGE-CENTRIC TESTING 143
by Murali Nandigama

How to Set Up the Document-Driven, Change-Centric Testing Framework? 145
Change-Centric Testing for Complex Code Development Models 146
What Have We Learned So Far? 152
Conclusions 154

12 SOFTWARE IN USE 155
by Karen N. Johnson

A Connection to My Work 156
From the Inside 157
Adding Different Perspectives 159
Exploratory, Ad-Hoc, and Scripted Testing 161
Multiuser Testing 163
The Science Lab 165
Simulating Real Use 166
Testing in the Regulated World 168
At the End 169

13 SOFTWARE DEVELOPMENT IS A CREATIVE PROCESS 171
by Chris McMahon

Agile Development As Performance 172
Practice, Rehearse, Perform 173
Evaluating the Ineffable 174
Two Critical Tools 174
Software Testing Movements 176
The Beauty of Agile Testing 177
QA Is Not Evil 178
Beauty Is the Nature of This Work 179
References 179

14 TEST-DRIVEN DEVELOPMENT: DRIVING NEW STANDARDS OF BEAUTY 181
by Jennitta Andrea

Beauty As Proportion and Balance 181
Agile: A New Proportion and Balance 182
Test-Driven Development 182
Examples Versus Tests 184
Readable Examples 185
Permanent Requirement Artifacts 186
Testable Designs 187
Tool Support 189
Team Collaboration 192
Experience the Beauty of TDD 193
References 194

C O N T E N T S ix

15 BEAUTIFUL TESTING AS THE CORNERSTONE OF BUSINESS SUCCESS 195
by Lisa Crispin

The Whole-Team Approach 197
Automating Tests 199
Driving Development with Tests 202
Delivering Value 206
A Success Story 208
Post Script 208

16 PEELING THE GLASS ONION AT SOCIALTEXT 209
by Matthew Heusser

It’s Not Business…It’s Personal 209
Tester Remains On-Stage; Enter Beauty, Stage Right 210
Come Walk with Me, The Best Is Yet to Be 213
Automated Testing Isn’t 214
Into Socialtext 215
A Balanced Breakfast Approach 227
Regression and Process Improvement 231
The Last Pieces of the Puzzle 231
Acknowledgments 233

17 BEAUTIFUL TESTING IS EFFICIENT TESTING 235
by Adam Goucher

SLIME 235
Scripting 239
Discovering Developer Notes 240
Oracles and Test Data Generation 241
Mindmaps 242
Efficiency Achieved 244

Part Three BEAUTIFUL TOOLS

18 SEEDING BUGS TO FIND BUGS: BEAUTIFUL MUTATION TESTING 247
by Andreas Zeller and David Schuler

Assessing Test Suite Quality 247
Watching the Watchmen 249
An AspectJ Example 252
Equivalent Mutants 253
Focusing on Impact 254
The Javalanche Framework 255
Odds and Ends 255
Acknowledgments 256
References 256

19 REFERENCE TESTING AS BEAUTIFUL TESTING 257
by Clint Talbert

Reference Test Structure 258

x C O N T E N T S

Reference Test Extensibility 261
Building Community 266

20 CLAM ANTI-VIRUS: TESTING OPEN SOURCE WITH OPEN TOOLS 269
by Tomasz Kojm

The Clam Anti-Virus Project 270
Testing Methods 270
Summary 283
Credits 283

21 WEB APPLICATION TESTING WITH WINDMILL 285
by Adam Christian

Introduction 285
Overview 286
Writing Tests 286
The Project 292
Comparison 293
Conclusions 293
References 294

22 TESTING ONE MILLION WEB PAGES 295
by Tim Riley

In the Beginning… 296
The Tools Merge and Evolve 297
The Nitty-Gritty 299
Summary 301
Acknowledgments 301

23 TESTING NETWORK SERVICES IN MULTIMACHINE SCENARIOS 303
by Isaac Clerencia

The Need for an Advanced Testing Tool in eBox 303
Development of ANSTE to Improve the eBox QA Process 304
How eBox Uses ANSTE 307
How Other Projects Can Benefit from ANSTE 315

A CONTRIBUTORS 317

INDEX 323

C O N T E N T S xi

Preface

I DON’T THINK BEAUTIFUL TESTING COULD HAVE BEEN PROPOSED , much less published, when

I started my career a decade ago. Testing departments were unglamorous places, only slightly

higher on the corporate hierarchy than front-line support, and filled with unhappy drones

doing rote executions of canned tests.

There were glimmers of beauty out there, though.

Once you start seeing the glimmers, you can’t help but seek out more of them. Follow the trail

long enough and you will find yourself doing testing that is:

• Fun

• Challenging

• Engaging

• Experiential

• Thoughtful

• Valuable

Or, put another way, beautiful.

Testing as a recognized practice has, I think, become a lot more beautiful as well. This is partly

due to the influence of ideas such as test-driven development (TDD), agile, and craftsmanship,

but also the types of applications being developed now. As the products we develop and the

xiii

ways in which we develop them become more social and less robotic, there is a realization that

testing them doesn’t have to be robotic, or ugly.

Of course, beauty is in the eye of the beholder. So how did we choose content for Beautiful

Testing if everyone has a different idea of beauty?

Early on we decided that we didn’t want to create just another book of dry case studies. We

wanted the chapters to provide a peek into the contributors’ views of beauty and testing.

Beautiful Testing is a collection of chapter-length essays by over 20 people: some testers, some

developers, some who do both. Each contributor understands and approaches the idea of

beautiful testing differently, as their ideas are evolving based on the inputs of their previous

and current environments.

Each contributor also waived any royalties for their work. Instead, all profits from Beautiful

Testing will be donated to the UN Foundation’s Nothing But Nets campaign. For every $10 in

donations, a mosquito net is purchased to protect people in Africa against the scourge of

malaria. Helping to prevent the almost one million deaths attributed to the disease, the large

majority of whom are children under 5, is in itself a Beautiful Act. Tim and I are both very

grateful for the time and effort everyone put into their chapters in order to make this happen.

How This Book Is Organized
While waiting for chapters to trickle in, we were afraid we would end up with different versions

of “this is how you test” or “keep the bar green.” Much to our relief, we ended up with a diverse

mixture. Manifestos, detailed case studies, touching experience reports, and war stories from

the trenches—Beautiful Testing has a bit of each.

The chapters themselves almost seemed to organize themselves naturally into sections.

Part I, Beautiful Testers

Testing is an inherently human activity; someone needs to think of the test cases to be

automated, and even those tests can’t think, feel, or get frustrated. Beautiful Testing therefore

starts with the human aspects of testing, whether it is the testers themselves or the interactions

of testers with the wider world.

Chapter 1, Was It Good for You?

Linda Wilkinson brings her unique perspective on the tester’s psyche.

Chapter 2, Beautiful Testing Satisfies Stakeholders

Rex Black has been satisfying stakeholders for 25 years. He explains how that is beautiful.

Chapter 3, Building Open Source QA Communities

Open source projects live and die by their supporting communities. Clint Talbert and

Martin Schröder share their experiences building a beautiful community of testers.

xiv P R E F A C E

Chapter 4, Collaboration Is the Cornerstone of Beautiful Performance Testing

Think performance testing is all about measuring speed? Scott Barber explains why, above

everything else, beautiful performance testing needs to be collaborative.

Part II, Beautiful Process

We then progress to the largest section, which is about the testing process. Chapters here give

a peek at what the test group is doing and, more importantly, why.

Chapter 5, Just Peachy: Making Office Software More Reliable with Fuzz Testing

To Kamran Khan, beauty in office suites is in hiding the complexity. Fuzzing is a test

technique that follows that same pattern.

Chapter 6, Bug Management and Test Case Effectiveness

Brian Nitz and Emily Chen believe that how you track your test cases and bugs can be

beautiful. They use their experience with OpenSolaris to illustrate this.

Chapter 7, Beautiful XMPP Testing

Remko Tronçon is deeply involved in the XMPP community. In this chapter, he explains

how the XMPP protocols are tested and describes their evolution from ugly to beautiful.

Chapter 8, Beautiful Large-Scale Test Automation

Working at Microsoft, Alan Page knows a thing or two about large-scale test automation.

He shares some of his secrets to making it beautiful.

Chapter 9, Beautiful Is Better Than Ugly

Beauty has always been central to the development of Python. Neal Noritz, Michelle

Levesque, and Jeffrey Yasskin point out that one aspect of beauty for a programming

language is stability, and that achieving it requires some beautiful testing.

Chapter 10, Testing a Random Number Generator

John D. Cook is a mathematician and applies a classic definition of beauty, one based on

complexity and unity, to testing random number generators.

Chapter 11, Change-Centric Testing

Testing code that has not changed is neither efficient nor beautiful, says Murali

Nandigama; however, change-centric testing is.

Chapter 12, Software in Use

Karen N. Johnson shares how she tested a piece of medical software that has had a direct

impact on her nonwork life.

Chapter 13, Software Development Is a Creative Process

Chris McMahon was a professional musician before coming to testing. It is not surprising,

then, that he thinks beautiful testing has more to do with jazz bands than manufacturing

organizations.

Chapter 14, Test-Driven Development: Driving New Standards of Beauty

Jennitta Andrea shows how TDD can act as a catalyst for beauty in software projects.

P R E F A C E xv

Chapter 15, Beautiful Testing As the Cornerstone of Business Success

Lisa Crispin discusses how a team’s commitment to testing is beautiful, and how that can

be a key driver of business success.

Chapter 16, Peeling the Glass Onion at Socialtext

Matthew Heusser has worked at a number of different companies in his career, but in this

chapter we see why he thinks his current employer’s process is not just good, but beautiful.

Chapter 17, Beautiful Testing Is Efficient Testing

Beautiful testing has minimal retesting effort, says Adam Goucher. He shares three

techniques for how to reduce it.

Part III, Beautiful Tools

Beautiful Testing concludes with a final section on the tools that help testers do their jobs more

effectively.

Chapter 18, Seeding Bugs to Find Bugs: Beautiful Mutation Testing

Trust is a facet of beauty. The implication is that if you can’t trust your test suite, then

your testing can’t be beautiful. Andreas Zeller and David Schuler explain how you can

seed artificial bugs into your product to gain trust in your testing.

Chapter 19, Reference Testing As Beautiful Testing

Clint Talbert shows how Mozilla is rethinking its automated regression suite as a tool for

anticipatory and forward-looking testing rather than just regression.

Chapter 20, Clam Anti-Virus: Testing Open Source with Open Tools

Tomasz Kojm discusses how the ClamAV team chooses and uses different testing tools,

and how the embodiment of the KISS principle is beautiful when it comes to testing.

Chapter 21, Web Application Testing with Windmill

Adam Christian gives readers an introduction to the Windmill project and explains how

even though individual aspects of web automation are not beautiful, their combination is.

Chapter 22, Testing One Million Web Pages

Tim Riley sees beauty in the evolution and growth of a test tool that started as something

simple and is now anything but.

Chapter 23, Testing Network Services in Multimachine Scenarios

When trying for 100% test automation, the involvement of multiple machines for a single

scenario can add complexity and non-beauty. Isaac Clerencia showcases ANSTE and

explains how it can increase beauty in this type of testing.

Beautiful Testers following a Beautiful Process, assisted by Beautiful Tools, makes for Beautiful

Testing. Or at least we think so. We hope you do as well.

xvi P R E F A C E

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book

in your programs and documentation. You do not need to contact us for permission unless

you’re reproducing a significant portion of the code. For example, writing a program that uses

several chunks of code from this book does not require permission. Selling or distributing a

CD-ROM of examples from O’Reilly books does require permission. Answering a question by

citing this book and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,

publisher, and ISBN. For example: “Beautiful Testing, edited by Tim Riley and Adam Goucher.

Copyright 2010 O’Reilly Media, Inc., 978-0-596-15981-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search
over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read

books on your cell phone and mobile devices. Access new titles before they are available for

print, and get exclusive access to manuscripts in development and post feedback for the

authors. Copy and paste code samples, organize your favorites, download chapters, bookmark

key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital

access to this book and others on similar topics from O’Reilly and other publishers, sign up for

free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

P R E F A C E xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://oreilly.com/catalog/9780596159818

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://oreilly.com

Acknowledgments
We would like to thank the following people for helping make Beautiful Testing happen:

• Dr. Greg Wilson. If he had not written Beautiful Code, we would never have had the idea

nor a publisher for Beautiful Testing.

• All the contributors who spent many hours writing, rewriting, and sometimes rewriting

again their chapters, knowing that they will get nothing in return but the satisfaction of

helping prevent the spread of malaria.

• Our technical reviewers: Kent Beck, Michael Feathers, Paul Carvalho, and Gary Pollice.

Giving useful feedback is sometimes as hard as receiving it, but what we got from them

certainly made this book more beautiful.

• And, of course, our wives and children, who put up with us doing “book stuff” over the

last year.

—Adam Goucher

xviii P R E F A C E

http://oreilly.com/catalog/9780596159818
mailto:bookquestions@oreilly.com
http://oreilly.com
http://oreilly.com/catalog/9780596510046

C H A P T E R T W E L V E

Software in Use

Karen N. Johnson

I STOOD IN THE ICU AT MY MOM’S BEDSIDE , thinking, “Don’t cry, not now.” I told myself I’d

cry later on when I was alone. I didn’t want to disrupt what was already chaos around me by

becoming hysterical. I wanted to think clearly about what was going on. And I knew once I

started crying, I would not be able to stop.

So I kept swallowing deeply, trying not to cry. My mom was lying in the hospital bed, hooked

up to multiple devices. Her eyes were closed tight; she seemed to be in a deep sleep. I had the

feeling that she was many miles away from me, but I was standing only inches from her side.

My mom had fallen and within 48 hours a brain injury had erupted deep inside her head that

required emergency neurosurgery. Now post-surgery, she was in what the nurses and doctors

refer to as a nonresponsive state. Her condition was unclear and her status considered unstable.

The neurosurgical ICU at Brigham and Women’s Hospital in Boston is shaped in an arc, with

each patient in a small alcove of her own. Each patient has her own nurse who stays within a

few feet of the assigned patient at all times. That day an assortment of doctors, specialists, and

family members streamed through the arched pathway, disappearing into the separate alcoves.

A sense of urgency hung in the air. It occurred to me that each alcove had not only a patient

but also a family and an event that had taken place. Everyone in the ICU has a story, a drama

unfolding, and a family in panic and wait mode.

I was about as alone with my mom as one can be in a busy ICU. I looked up and around at all

the equipment. There were tubes, wires, and unknown devices. All the equipment looked

pretty scary. I started reading the labels on the devices for distraction. Labels, I thought, will

155

give me something to focus on. Reading labels will keep me from crying. The labels had

company names printed on them, names such as Abbott Labs, Hospira, and Baxter. I knew

each of these companies. I knew people who had worked at each of these companies. Gee,

I’d worked at these companies. Memories of past projects and people began to trickle through

my mind, a welcome distraction.

One tube in particular caught my eye. It was a feeding tube. It distressed me to see my mom’s

name on that tube. She’d always said that if she ever needed to be on a feeding tube, we should

just…. I didn’t want to think about that. I moved closer to the tube, my eyes following it from

the fluid in the sterile bag hooked on an IV pole winding its way down to my mom. “Total

parental nutrition” was the medical description of the fluid being pumped. I’d worked on that

type of medical device and the computer software that directs it in building the right

composition of fluids for the patient. If the dosage of the fluids or the mix of fluids is not correct,

the patient can die.

I realized this was software I’d tested.

A Connection to My Work
Three weeks later, with my mom’s situation stabilized as much as possible, it was time for me

to go home to Chicago. My mom’s condition had improved. She’d moved from the ICU to a

regular hospital room, and then on to a rehabilitation center. Her progress had gone well, but

she had a long way to go for a full recovery. I knew upon my return to Chicago I would once

again have to seek work. Sometimes work finds me, and sometimes I find it. It’s been that way

since I left my full-time employment almost three years ago and became an independent

consultant.

Once I was settled back into my home office, I contacted people I knew and in general looked

for work. I got an unexpected phone call from a local company that I sometimes contracted

jobs through. Was I available for some validation work? The contract company told me that

the client had asked for me by name. The reason they’d asked for me was based on my previous

experience with medical software. I had a good hunch which client it was, based on the

contracting company. Who’s looking for me? And what’s the work?

The answer was, “The product is a total parental nutrition (TPN) product, and they need

someone who can ensure the software testing has been robust enough. Are you interested?”

A few phone calls and a signed contract later, I was paired with a pharmacist to work on

reviewing the software testing of a TPN product. A product just like what my mom was now

dependent on for staying alive. When someone’s in a hospital or rehab center, it’s hard to know

which device is being used on any given day, especially when the device isn’t at the patient’s

bedside but is instead used at the medical lab offsite or down a hallway in a hospital lab where

the IV bags of solutions are built before being dispensed to the patient.

156 C H A P T E R T W E L V E

So I don’t know for certain whether the software I’ve tested in this area is the exact software

that was used to build the solutions that kept my mom alive. But for me, the experience of

seeing her hooked to a device that could easily and may possibly have been the same device

with the same software that I tested had an effect on me.

If you’ve never tested medical software or worked with medical devices, you might want to

believe that the testing and the overall development process is more rigorous than it is for any

other type of hardware or software. But it isn’t, necessarily.

The truth is there is not much difference between the software testing that takes place on

medical software and other software. Yes, there are mountains of documentation, internal

audits, and a final stamp of approval from the Food and Drug Administration (FDA). But when

you peel back the formality and the perceived rigor, testing medical software relies on people

and their abilities just as much as any other software or product. There is no special magic

behind the testing of medical software; the quality of a product comes from the talents and

ability of the team.

I think back to an earlier experience I had testing medical software. The personal conviction,

common sense, and pure integrity of a couple of people in particular on the team made the

difference. I was an individual contributor on that team, and I am fortunate to have seen

integrity in action, which is clearly one of the more beautiful sights to see. For me, in more

than two decades of working with software and watching technologies come and go, it is the

people that always make the difference. Just because it is beauty that cannot be seen on a

canvas nor heard at a symphony doesn’t make it less beautiful. I believe it is a story to be told.

From the Inside
It was just a few years ago when I heard about the need for a software tester on a project with

two people I had known for some years. It sounded like an unusual project; a project that I

might be able to sink my teeth into. It was testing the software that communicates to and directs

a medical device. I’d never worked with software that could so immediately affect a person. I

recall asking what the worst-case scenario was if the software didn’t perform correctly. The

answer “patient death” made me open my eyes wide and think hard about accepting the work.

After all, it wasn’t but a couple of years earlier that I had been working on an e-commerce site

that sold groceries. On that team we occasionally made lighthearted jokes on stressful days that

the worst that could happen was a customer would be missing his milk and bread. Before

accepting the new project, I recall thinking that there would probably be no lighthearted days

on this one. That was a good general realization to have before beginning work.

On a personal level, I knew one of the leads, Michael Purcell, from previous work experience,

but I had never worked with him directly on a project. His reputation and work ethic are well

known. I’d admired his work from afar, and the chance to work with him on a project appealed

to me. Even more appealing was the prospect of being paired directly with him.

S O F T W A R E I N U S E 157

The second person I knew was Ed Young. I’d hired him some years before. I remember thinking

that even if the work would be intense, I could relax in one regard: I knew I could rely on Ed

and Michael. Ethically, I could trust both of them; there was simply no way either person would

ship a product he didn’t believe was ready. And I also knew that they would listen carefully

and closely to anyone working on the project, regardless of the person’s stature or employment

status. I’ve seen projects before where contractors were treated poorly and their input barely

listened to. There would none of that with Ed and Michael leading.

I wanted to be on this team.

I was given the title of Study Author, as about half of my time would be writing and the other

half devoted to hands-on testing. This was a perfect pairing of tasks for me.

In some ways I was part of the entire team working toward ensuring that the product was

ready for market. In other ways, I worked alone, which has always suited me well. Although

several testers were focused on specific, discrete parts of the product suite, my focus was to be

broader. I would test alone, away from the other testers, and test from a wider perspective with

a more holistic approach, while the other testers would focus on specifics and details. I sat near

the team, but we rarely had the same schedule. Ed and a test lead spent time together

coordinating activities while Michael and I coordinated our own efforts. And yet we

communicated as an entire team frequently.

Notably, on every project I’ve worked on that I would consider successful, constant

communication was always a contributor.

I was paired with Michael and functioned in several ways as his right hand. We talked candidly

then and we talk candidly now about what my strengths are and are not. Michael is a tough

but honest critic, and this includes his ability to critique his own work and strengths. Michael

and I agreed that one of my strengths was my ability to write. My past experience writing

validation documents that could stand up to an FDA audit would be critical. And Michael’s

ability to edit my writing proved to be another perfect pairing. (In fact, as a personal request,

Michael was my preview editor of this chapter.)

We recognized that Michael knew the product better than I did, but we also believed I had a

more comprehensive testing background compared to his engineering background.

It’s interesting that physical beauty often includes a sense of harmony and symmetry. These

pairings—testing and writing, testing knowledge versus engineering knowledge, low-level

specific component testing versus high-level general system testing—brought symmetry to our

work. These were forms of checks and balances.

Many times, Michael would explain his testing ideas to me, and at least two things would take

place during these exchanges. One was that I was slowly and in detail learning about the

product. And the second was that we would use the strengths, insights, and experiences we

each had while we took turns raising challenging questions. Questions such as: How could we

158 C H A P T E R T W E L V E

test better? What else can we do to challenge the product? What else can we do to gain faith

that the product will work well in production?

One of the subtlest aspects of working on a project is the atmosphere. It doesn’t seem to be

something that is discussed often. It seems we are more engrossed by the technology or the

tools or the raw skills of the people, not to mention how often we focus on the deadlines. And

yet it’s the atmosphere on a project that I believe contributes to my ability to do my best work.

Working with Michael I’ve always felt like I can muse out loud, share my thoughts—really

brainstorm without recrimination. I can go out to the far edges and toss ideas out. And of

course, after chatting over ideas, we do toss a fair amount of them out. But I think that in order

for team members to generate test ideas, they need wide-open space to explore what might be

possible before they can lasso those ideas into reality.

And so, this is how we worked. We worked together; we worked alone. We constantly reverted

back to guiding questions and challenged each other and our ideas. We kept plodding on, doing

our best.

And yet, something was missing.

Adding Different Perspectives
There was a day when the three of us, Michael, Ed, and I, were talking in a hallway. We were

talking about how each of us felt pretty certain there were still defects in the product. Even

though the test team had been diligent in testing, something was missing. Where was our

confidence and conviction that the product was ready? We each had the sense that there were

issues still lurking. It was more than a hunch; we each knew of a few bugs that hadn’t been

consistently reproduced and corrected. Each of the testers felt the same: the product wasn’t

ready yet.

How could we solve the problem?

From a business perspective, Ed worked to get the approvals and financing needed to

implement our new ideas. It’s easy not to think about what efforts Ed had to work through

with management, because he gracefully kept those concerns from draining our energies.

Michael and I remained focused on the testing efforts.

Like many complex problems, it took more than one solution. First, we added a different

approach to testing. We wanted an opportunity to follow through on our hunches where issues

remained. A new team of testers would be brought in to execute testing in an exploratory

approach while the existing testers who had been working with prepared written test scripts

would continue. The plan was to keep the scripted testers executing the test scripts that would

be required for the FDA audit before product launch and to have the second team find what

was missing. The second team of testers would be trained, fed hunches, and would primarily

function as exploratory testers.

S O F T W A R E I N U S E 159

Once the decision to bring in more testers was made, the urgency on the project picked up

pace. A training room was turned into a makeshift test lab. The room had several rows of

workbenches with computers. The computers had the needed mix of operating systems and

software already in place. Arrangements were made so that the new test team could have the

training room without disruption for several weeks.

Unfortunately, the computers were all desktop models and cabled such that moving any

equipment required cutting cable wraps. The workbenches were narrow and the spaces

between the computers limited, so keeping a notebook alongside a computer was difficult. The

room was never designed for working such long days, and the days were long. It was a

windowless room with limited unused space. And by having so many of the computers working

so many hours per day, the room could get hot and sticky, even though it was winter.

Still, the room had energy. Every person working there, whether all day or for brief bursts of

time, knew they were there for a reason. The work was clear. When the software you’re testing

is responsible for what dose a patient receives and death is a very real risk, there is a sense of

purpose that’s difficult to articulate but a feeling and sensation that hangs in the air each day.

The exploratory testers were hired quickly. They had less time to learn the product than the

scripted testers, but they received more personal interaction from various members of the team

who were anxious to get them up to speed. Before long, there was a testing frenzy taking place,

with both teams of testers working to get the product in shippable shape.

Another solution we came up with was to build and use a scientific test lab that would be

equipped with the medical devices and the computers for testing, which would more closely

simulate real use. The science lab would require space and equipment that hadn’t been planned

previously. The theory was that we would rigorously exercise the software using yet another

test strategy. Instead of focusing on details and purposely looking to discover issues at the micro

level, the testing planned for the science lab was designed to find issues at a more macro level.

We needed time to explore all the components together.

Another solution was to carve out time to purposely test from a multiuser perspective. We

knew that in a busy medical lab multiple people would be using the software in bursts of

activities. We wanted to test resource contention, file-sharing issues, and periods of stress on

the system in specific ways that we believed would mimic real-life use. I had previous

experience testing software in multiuser scenarios, and even though my experience was not

related to medical software, that background was helpful in the planning process.

Exploratory testing, stress testing, multiuser testing, and real-life simulation are all different

ways of exploring software. By altering focus, different views and issues can be found and

exposed. In our case, none of these approaches were frivolous or far-fetched; in fact, each form

of testing was designed to be as practical and realistic as we knew how to make it.

160 C H A P T E R T W E L V E

Exploratory, Ad-Hoc, and Scripted Testing
Cem Kaner first introduced the term “exploratory testing” in the book Testing Computer

Software (Wiley). In his use of the term, he offered an approach that emphasized the value of

testing as a brain-engaged, thoughtful process, as opposed to testing by executing prescriptive

test scripts. Since then, software testing expert James Bach has devoted more than a decade to

teaching, writing, and presenting on the topic of exploratory testing. The following is a

definition of exploratory testing taken from James’s website:

The plainest definition of exploratory testing is test design and test execution at the same time.

With exploratory testing, test charters are written to focus testing and provide a strategy for a

test session. Session-based exploratory testing adds the concept of defining a length of time for

the session. Testing is executed in sessions where the focus remains primarily, if not exclusively,

on the test charter. Within a test session, a tester can explore, create ideas, and execute these

ideas, providing a sense of test coverage and confidence. And when it’s not possible to finish

all of the ideas in one test session, additional test sessions can be planned. Exploratory testing

takes discipline.

There are elements from this definition posted on Wikipedia that are worth reflecting on:

Exploratory testing seeks to find out how the software actually works, and to ask questions about

how it will handle difficult and easy cases. The testing is dependent on the tester’s skill of

inventing test cases and finding defects. The more the tester knows about the product and

different test methods, the better the testing will be.

The second group of testers used several different approaches to testing, including, but not

limited to, exploratory testing. For their exploratory testing, the testers executed focused

sessions. I think one important differentiator between ad-hoc testing and exploratory testing

is focus. The testers were trained on the product and had access to everyone on the team, but

were then left to their own thinking process to create test ideas, investigate, test, and discover.

The exploratory testing was certainly reliant on the thinking and skills of the testers.

As testers completed test sessions, they would discuss their findings, resolve their questions,

and report defects. Those post-execution conversations determined whether additional testing

was needed and shaped those next steps. Those conversations provided valuable learning

sessions—learning for the testers as well as for the other people on the team.

James Bach uses the term “debrief” to describe a conversation that can be held after testing

that helps draw out information from the tester. He offers a debriefing checklist on his website

at http://www.satisfice.com/sbtm/debrief_checklist.htm. These post-execution conversations that we

held did not follow James’s checklist of ideas. Instead, the questions and conversations were

more specifically tailored according to the tester, the topic, the findings, and the overall context

of what was taking place and what metrics the team was interested in maintaining.

S O F T W A R E I N U S E 161

http://en.wikipedia.org/wiki/Exploratory_testing
http://www.satisfice.com/sbtm/debrief_checklist.htm

There is no advantage in departing from the formality of scripted testing to adopt exploratory

testing without adapting as needed. There is beauty in finding your own path, in understanding

what is needed and applying what makes sense.

Another alternative to prescriptive test scripts and exploratory testing is ad-hoc testing. Ad-

hoc testing is often confused with exploratory testing, but there are essential differences

between the two.

James’s site offers the following clarification of the difference between ad-hoc and exploratory

testing:

Exploratory testing is sometimes confused with “ad hoc” testing. Ad-hoc testing normally refers

to a process of improvised, impromptu bug searching. By definition, anyone can do ad-hoc

testing.

With ad-hoc testing, testers execute test ideas as the ideas tumble into their heads. The core

advantage of ad-hoc testing is that everyone can test. Each tester’s primary ideas have an

opportunity to be explored. But this might be where the advantage of ad-hoc testing ends.

Most people untrained in testing run out of ideas rather quickly, and so, after a short burst of

test session, they’re done. Untrained testers often cannot repeat the steps they took to find a

defect. And with ad-hoc test sessions, testers bounce from one area of an application to another

area; it is hard to understand what’s been tested and what remains to be tested.

But ad-hoc testing has its advantage in generating energy, especially when it’s executed in

“bug bash” sessions. We used this tactic on our project as well. Someone on the team would

share an idea about where a defect might remain, and then all the testers would pursue that

idea for a short period of time. As people tested, they would talk out loud, and impromptu

brainstorming would take place. Everyone had ideas. One benefit of having the second team

of testers and a separate test room was having the chance to explore ideas and to participate

in unplanned test activities. If one person shared an idea, everyone in the room could jump in

and add to or extend the idea in some way.

Other tests sessions were executed when a tester was paired with someone on the team for a

conversation and generating ideas about potential issues. Some of those ideas came from the

scripted testers who had either a suspicion about a defect or had encountered an issue but had

not been able to replicate the defect. Those ideas were shared in conversations before testing,

and that same spirit of collaboration continued post-execution. The scripted testers were

encouraged to share their test ideas with the exploratory testers. The scripted testers could

continue the required test execution work, and the exploratory testers could work on hunches.

And yet another type of testing took place when the exploratory test team looked at the scripted

tests for a particular area of the product and generated more ideas after reading the scripts. In

part, the test scripts provided training through having such detailed test steps written out. By

reviewing the scripts, testers could extend their ideas based on whether those tests would

include different data or different permutations, or sometimes they would just provide food

162 C H A P T E R T W E L V E

for thought. Is that ad hoc? Is that exploratory? Each of these approaches to testing had its

positive impact. Bugs were being found and repaired, and our confidence was rising.

Multiuser Testing
I have a vision in my mind about performance and multiuser testing. The vision certainly

applies when test automation is being used, but also when manual multiuser testing takes

place. I envision multiple test automation scripts running at the same time, each script

simulating multiple users performing a set of activities. I see each script running like a bar of

color, like radio frequency waves. The scripts run like music, in a crescendo, the peaks coming

close together, almost colliding and creating spikes, and at times running wildly with different

peaks and lulls in a cadence of their own. I think of it especially when I hear full symphonic

pieces of music, the sense of harmony, of working together.

Each instrument adds to the overall symphonic effect, just as each manual tester adds to the

overall impact on the system under test. Even a single manual tester alters the environment

by simply being on the system. It takes the entire orchestra to achieve some sounds, just as it

takes a multitude of scripts or manual testers to achieve a production load simulation. The

activity is no longer about one tester, but rather is about what is achieved as a collective.

Multiuser testing is not the same as performance testing per se. Performance testing is often

focused primarily on transaction timings. In the case of multiuser testing, our goal was not

about timings, but instead focused on what happens when multiple people execute a specific

activity at the same time. Overall, the multiuser test ideas were about preventing data

corruption, record contention, duplicate records, or system crashes.

The test concepts were sobering reminders of the importance of thoroughly testing a medical

device. Although a test condition might have been, “Let’s check race conditions on editing a

patient record,” underneath that test condition was a possibility that two lab technicians could

edit a patient’s record at the same time and cause either corrupted data or leave patient data

in such a state that an inaccurate patient prescription could be created—and should the

prescription be dispensed to the patient, that patient could die. Such was the case with nearly

every test condition in the multiuser area of testing, and the potential consequences were

chilling.

One advantage of having the exploratory testers in one physical room was that we could

coordinate multiuser tests more easily. We’d speculated about a few issues in this area, but we

didn’t gather proof of how ugly it could be until we had the ability to orchestrate multiple

people with multiple PCs running through multiple tests. We had accumulated a collection of

ideas, and now we had the means to execute.

Michael crafted a set of multiuser tests before the exploratory testers joined the project. I had

worked with multiuser testing previously, and we had discussed ideas. Our collection of ideas

was centered on making sure patient data and patient prescriptions would not collide and could

S O F T W A R E I N U S E 163

not be corrupted. Since the application prevented more than one instance running on one

computer, it had not been possible to easily plan or conduct this type of testing by any one

tester alone at his desk with only one computer. We did have a small test lab with multiple

workstations, where some multiuser tests had been attempted, but not with this much focus

or attention and not with the ease of access to multiple computers and multiple testers whose

activities could more readily be orchestrated.

The test suite grew significantly as team members added new ideas and “what if” scenarios.

The test execution sessions had energy. One idea would spawn another, and that one yet

another. Everyone had ideas and everyone contributed. The opportunity to brainstorm had

been revived. No longer was testing disengaged from thinking, as is often the case with

executing prescriptive test cases. Testing in the makeshift test lab had a professional atmosphere

focused on finding and sharing ideas. When an intelligent group of people gathers together

and is given the time and space to explore, the desire to come up with great ideas and to be a

strong contributor flourishes. In contrast, isolated, solitary, mechanical test execution reduces

brain engagement by virtue of the need to execute and prove that the test script was not varied

in the execution process.

Upstairs, the scripted testers plodded along. Piles of executed test scripts stacked up with their

traditionally daunting impression that everything had been tested. But the energy and the ideas

flowing in the training room made it apparent that all the test ideas had not been thought of

before and were not captured by the test scripts. Rather than viewing the test scripts as defective

or inadequate, the general sense of the team was that the software and the devices offered

more permutations and possible flaws than might ever be tested, found, or addressed.

We might want to believe that all the testing has been executed, every bug has been found,

and perfect software has been achieved, especially when it comes to a medical device. But

perfection is not reality. Instead, assurance is found in knowing that a product works well and

that, even without perfection, beauty exists.

With the mix of testing activities taking place, we were in fact finding issues. And in finding

more flaws, our confidence that we were seeing the product more accurately increased. Better

to find defects and argue about what needed to be addressed than not find the defects before

shipping.

Most of the multiuser tests were executed with someone standing at the front of the room and

explaining the test. Each tester would try out the software to make sure they understood what

was being discussed and how to execute what was needed. The person leading the test would

then orchestrate the testers to discover “what would happen if…?”

The testers worked through multiple executions with the same goal until we had good answers

to the following questions:

• Did each tester understand what she needed to do?

• Was the test conductor satisfied that the timing and execution had achieved the goal?

164 C H A P T E R T W E L V E

• Had the test been executed enough times to conclude what the results were?

• Were any issues discovered?

In addition to the multiuser testing, testing was run to ensure that a busy medical lab with a

volume of data, patients, and prescriptions would be ready to handle the anticipated load. At

a high level, we knew what the correct responses should be: no duplicate records, no race

conditions, no data corruption, and no system hangs. Beyond that, no tester needed specifically

written expected results to know when something was wrong.

These tests were later turned into formal test scripts. What had been exploratory at the start

became repeatable scripts. The value of turning the testing into repeatable scripts was the

assurance that this form of multiuser testing would be executed any time the software was

released in the future. This is an aspect of working with regulated software: test scripts deemed

as essential for one release cannot be dismissed for the next release without a review and

explanation. It had become clear to us that this form of testing needed to remain as part of the

overall product testing for all future releases.

We couldn’t ensure the creativity and energy of the future testing, but we could ensure that

multiuser testing would be considered essential. To have a team able to function in such a way

that it can achieve something no one person can achieve alone is, to me, the beauty of

teamwork. For each of these sessions I participated in, and the multiuser testing sessions in

particular—even when the testing found no issues—the sense of teamwork had immeasurable

positive and lasting effects.

The Science Lab
Most of the testing throughout the project took place with just the software, and a smaller

amount of the testing took place with the software and the medical devices paired together.

But Michael felt that the full product couldn’t be validated without a realistic workout, and

that workout would be bringing all the components together in a lab with multiple days of

heavy full usage.

Michael was in the process of designing what, to this day, I still think of as “the science lab.”

The intention of the lab was to pair computers with the medical devices. Once the lab was

assembled, we paired the exploratory testers and the scripted testers for simulated use of the

medical devices and the software in a scenario that mimicked real life as closely as possible.

The lab testing days were planned as the final formal testing of the product.

Michael had planned every aspect of the science lab with some assistance from me. It was no

simple task to think through, order, and arrange computers, software, cabling, workbenches,

medical devices, more cabling, fluids, IV bags, tubing, printers, and labels. The room was also

equipped with a laminar flow hood, which is a workbench designed to be partially enclosed

to minimize contamination of the fluids being worked with. It can be loud when the air

filtration is running, and it also takes up considerable space and adds some complexity to

S O F T W A R E I N U S E 165

working with the devices. But Michael felt that the flow hood was necessary, as most labs

would have a flow hood and some, if not all, patient prescriptions would be built inside a flow

hood. Each tester would be trained to work with it. For the computers, the network

connections had to be configured, as did the software. For the medical devices, each device

required some assembly and calibration before use.

Then it was time to assemble the lab, and we spent several days doing this together. I recall

Michael’s practical suggestion for the lab assembly days: wear jeans and bring a pocketknife if

you own one. We cracked open the boxes for computers and the medical devices. I learned

more about the devices while configuring the equipment. As we set up, we discussed the

logistics of the coming days.

The day we finished setting up the lab, I stood at the door and looked back to see how

everything looked. The lab was a large rectangular room with concrete walls. The back wall

had a large sink and a long counter. In the middle of the room were two long worktables with

two rows of carefully configured devices. Overhead, a long wire-framed tunnel loomed with

countless cables running from devices to computers and from devices to printers. The

computers were configured. The printers had paper. The devices had been calibrated and there

were rows of fluids ready for use. The laminar flow hood had been set up and configured. The

lab looked clean, organized, and ready.

At the end of the day, I taped a paper sign from the inside of the glass door. The sign had the

project name and a short list of who to call for access to the room. We shut the lights off.

Michael headed out for the day. I recall standing for a short time outside the lab door, peering

through the glass, ready for the coming days of testing.

Simulating Real Use
A test execution plan was laid out for the testing days at the science lab. The core of the plan

simulated multiple full days of real-as-possible use of not just the software, but also the software

that worked with the devices and the devices that generated the solutions. We wanted to test

what might be thought of as “end to end” testing, at least as far as we could take the simulation.

After all, we didn’t have patients. But we wanted the testing to be comprehensive and holistic.

We also had an underlying desire to see the software and the devices working in harmony for

multiple hours and days in a row. And although we weren’t trying to stress-test either the

software or the devices (this had been done previously), we did want testing to span full and

hearty days of work.

Unlike many days on the project when people would work alone, the testing days at the science

lab were very much a team exercise. Everyone had a role, and each person knew what work

she needed to execute. Prior to the days in the lab, we’d mapped out a plan. We briefed

everyone on the team and discussed the plan multiple times in advance, to both smooth out

the plan and to incorporate ideas and feedback from the team. We wanted to be ready to rock

and roll when we hit the lab.

166 C H A P T E R T W E L V E

Two teams were planned. Each team represented a technical configuration that would be used

in production, the theory being that each team would mimic a medical lab with a specific

computer, software, and medical device configuration. The overall lab would be busy, printers

would have other prescriptions in the queue, fluids would need to be replaced, tubing that

would get a heavy workout would need to be flushed and possibly changed. We planned the

days to be busy, robust, and even a bit hectic in spots, just as a medical lab might be.

Each team had multiple patient prescriptions to fulfill, with each prescription representing a

variation we wanted to address. And, of course, that itself could be a deviation from real use.

Perhaps on an ordinary day in an actual medical lab there wouldn’t be this much variation of

prescriptions.

Understanding, knowing, and designing testing around real-life scenarios can be challenging.

To know how a product will be used in the field by actual users means you have to gain insights

from the user perspective. It can be particularly challenging if the product has never been

released to production.

Even on products that are already in production, finding out what users really do with the

software can be difficult. In the case of a web application, it might be possible to get that

information from server logs. In the case of medical devices, we can’t just ask a hospital or a

lab for their production logs. Sensitive patient data is well protected (understandably) by the

Health Insurance Portability and Accountability Act (HIPAA) and other regulations.

But what if we’re not interested in the patient data? What if we just want to do the best possible

testing and we believe having insight into field use will give us that? I’ve wanted to shout this

question to some unknown group of medical doctors and lab specialists, but the short answer

is that I’ve never seen that dilemma solved.

It would be great to have the test lead of each medical device paired with a medical practitioner

to see real-life events unfolding and learn how a device or software is used under stressful,

tight timing, and intense situations when the need is critical.

I envision a wonderful pairing: an opportunity for testers to better understand a product’s use

and for an end user to be able to give insight to a tester in a way that no requirement document

or any use case could ever impart. Why isn’t this just viewed as a practical, grounded solution?

And why would the software testing community and the actual medical practitioners not be

encouraged to make this happen?

Instead, as testers, we earnestly try to create scenarios we believe are realistic. But what do we

know when we’re sitting in an office surrounded by office workers and far away from the

setting a product will be used in? We do the best we can.

In life, we don’t know when a memory is being created. It isn’t until time passes and we see

the events that stay with us become the memories that we keep. I can recall the days in the

science lab vividly in memory.

S O F T W A R E I N U S E 167

It seemed that everyone on the team was just a bit nervous, a bit anxious, and more willing

to help each other than ever. There was an atmosphere that’s hard to describe. Maybe a

collection of words is the best way to describe those days in the science lab: serious, intent,

stressful, exciting. It also seemed that we wanted each person to be able to execute what was

needed. The sense of camaraderie was strong. We moved together. If one person needed a

break, the whole team would have to wait. We arrived together, we worked together, we ate

lunch together, and we couldn’t wrap up for the day unless the whole team was ready.

The days in the lab were long. People made mistakes. We documented what we did. We had

two team members on hand who did not execute but were there to collect documentation and

review materials as they were generated. I think we each knew that we would have to uncover

something truly significant in order for these days to be repeated. We hoped we were long past

that part of the product cycle.

Instead of testing the software in small, focused areas, and thinking about the software from

a technical perspective, designing simulated real-life scenarios has the beauty of stringing

multiple aspects of usage into full-length scenarios. There was a hope, and certainly an intent,

that full-length scenarios would flush out defects not found until this type of simulated usage

was executed.

After all, this is how the product would be used.

Testing in the Regulated World
In 2001, my boss Jim Kandler explained how to test software in a regulated world. His

explanation to me (referring to the FDA) was: tell them what you going to do, do it, and then

prove you did it. “Gee, that’s it?”, I can recall thinking. But it’s a lot harder to do than it sounds.

What Jim meant by “tell them what you going to do” is this: document the process. Document

it for multiple people—the team who will execute the process, the company so that they know

the team has a process, and of course, for the FDA. I was taught that an FDA auditor will review

the process documentation as one of the first parts of an audit and then ask for evidence that

you’ve followed the process. Some of the other documents they request first are defect reports,

the trace matrix, and the final validation report.

What I’ve found is that detailing the process you believe the team follows is harder than it

sounds when you get down to the nuances, not to mention the exceptions that occur in real life.

In the regulated waterfall approach to software development that I’ve seen, requirements are

drafted. Requirements are from a business perspective, the patient perspective, the customer

perspective, and from a systems point of view. Often people write them without thinking about

testing or about how they are going to prove the requirement. Often people write them without

a software tester’s involvement.

168 C H A P T E R T W E L V E

The requirements evolve into design specifications, and since the business analyst often cannot

address the technical implementation, the design is usually written by development. One of

the classic issues is that development often writes design specifications ahead of time, so they

haven’t yet hit the roadblocks of implementing the ideas. The design gets written ahead of

time, ahead of knowledge, and then the documents go through a chronic revamp process,

which leaves the documents in a state that is less than helpful.

It seems to me that when unregulated software is being developed, open conversations about

possible remaining bugs are fairly common. Conversely, when the product undergoes FDA

scrutiny, those open conversations are less easy to have for political reasons. For regulated

products there is a formal process for documenting, reviewing, and resolving defects. But even

with a regulated product, there is tremendous momentum in getting a product to ship. To

announce late in the process that more tests could be done or that possible defects exist creates

unsettled circumstances. Everyone knows that if critical bugs are found, those bugs need to be

fixed. Opening up the code requires reexecuting numerous test cases and possibly extensive

product release documentation adjustments. The cost can be significant. Pressure mounts. It’s

exactly a condition in which creating and asking to execute additional testing can be difficult.

And it is exactly a condition under which more testing should be done—especially on products

that have such critical outcomes.

Nonemployees are rarely part of the FDA audit at the end of the product development cycle.

The lead person who works with the FDA to move the product through the audit is carefully

selected. The lead person needs a mixture of regulatory experience, product experience, and

enough knowledge about the team to assemble whatever additional information is needed

rapidly and with confidence. I’ve never witnessed a hands-on tester pulled into the process.

In 2001, one of my first training experiences was being sent to FDA auditor training. My boss,

Jim Kandler, wanted me to understand firsthand what an FDA auditor was trained to look for.

Beyond the papers, if I were an FDA auditor myself, I’d want to talk to the testers from the

team. I’d want to hear directly from the people who touched the software and got to know the

product. I would not want to be left with a designated spokesperson.

What happened behind the doors of the FDA audit for this particular product, I will never

know. I know the product is in use on the market.

At the End
On the last day of testing at the science lab, we lingered about. Most of us were working as

contractors. We knew once the testing was done we’d roll off the project and likely never work

as a team again. This is part of a contractor’s work: projects end and people move onto other

projects. Some people keep in touch, some don’t. I like the frequent change. I like being on a

project long enough to see what works and what doesn’t. I like to get to know people. I like

to see products launch and be used.

S O F T W A R E I N U S E 169

The days in the science lab were some of the last project days for the contractors. The overall

product release moved forward with activities such as final validation documents,

manufacturing considerations, and delivery details before final product launch.

I wasn’t prepared to see a total parental nutrition product used to care for a family member.

But I’m grateful that in this imperfect world, people do their best to create products that matter.

And each of those products needs people who can test.

170 C H A P T E R T W E L V E

A P P E N D I X

Contributors

JENNITTA ANDREA has been a multifaceted, hands-on practitioner (analyst, tester, developer,

manager), and coach on over a dozen different types of agile projects since 2000. Naturally a

keen observer of teams and processes, Jennitta has published many experience-based papers

for conferences and software journals, and delivers practical, simulation-based tutorials and

in-house training covering agile requirements, process adaptation, automated examples, and

project retrospectives. Jennitta’s ongoing work has culminated in international recognition as

a thought leader in the area of agile requirements and automated examples. She is very active

in the agile community, serving a third term on the Agile Alliance Board of Directors, director

of the Agile Alliance Functional Test Tool Program to advance the state of the art of automated

functional test tools, member of the Advisory Board of IEEE Software, and member of many

conference committees. Jennitta founded The Andrea Group in 2007 where she remains

actively engaged on agile projects as a hands-on practitioner and coach, and continues to bridge

theory and practice in her writing and teaching.

SCOTT BARBER is the chief technologist of PerfTestPlus, executive director of the Association

for Software Testing, cofounder of the Workshop on Performance and Reliability, and coauthor

of Performance Testing Guidance for Web Applications (Microsoft Press). He is widely recognized as

a thought leader in software performance testing and is an international keynote speaker. A

trainer of software testers, Mr. Barber is an AST-certified On-Line Lead Instructor who has

authored over 100 educational articles on software testing. He is a member of ACM, IEEE,

American Mensa, and the Context-Driven School of Software Testing, and is a signatory to the

Manifesto for Agile Software Development. See http://www.perftestplus.com/ScottBarber for more

information.

317

http://www.perftestplus.com/ScottBarber

REX BLACK, who has a quarter-century of software and systems engineering experience, is

president of RBCS, a leader in software, hardware, and systems testing. For over 15 years,

RBCS has delivered services in consulting, outsourcing, and training for software and hardware

testing. Employing the industry’s most experienced and recognized consultants, RBCS

conducts product testing, builds and improves testing groups, and hires testing staff for

hundreds of clients worldwide. Ranging from Fortune 20 companies to startups, RBCS clients

save time and money through improved product development, decreased tech support calls,

improved corporate reputation, and more. As the leader of RBCS, Rex is the most prolific

author practicing in the field of software testing today. His popular first book, Managing the

Testing Process (Wiley), has sold over 35,000 copies around the world, including Japanese,

Chinese, and Indian releases, and is now in its third edition. His five other books on testing,

Advanced Software Testing: Volume I, Advanced Software Testing: Volume II (Rocky Nook), Critical

Testing Processes (Addison-Wesley Professional), Foundations of Software Testing (Cengage), and

Pragmatic Software Testing (Wiley), have also sold tens of thousands of copies, including Hebrew,

Indian, Chinese, Japanese, and Russian editions. He has written over 30 articles, presented

hundreds of papers, workshops, and seminars, and given about 50 keynotes and other speeches

at conferences and events around the world. Rex has also served as the president of the

International Software Testing Qualifications Board and of the American Software Testing

Qualifications Board.

EMILY CHEN is a software engineer working on OpenSolaris desktop. Now she is responsible

for the quality of Mozilla products such as Firefox and Thunderbird on OpenSolaris. She is

passionate about open source. She is a core contributor of the OpenSolaris community, and

she worked on the Google Summer of Code program as a mentor in 2006 and 2007. She

organized the first-ever GNOME.Asia Summit 2008 in Beijing and founded the Beijing GNOME

Users Group. She graduated from the Beijing Institute of Technology with a master’s degree

in computer science. In her spare time, she likes snowboarding, hiking, and swimming.

ADAM CHRISTIAN is a JavaScript developer doing test automation and AJAX UI development.

He is the cocreator of the Windmill Testing Framework, Mozmill, and various other open

source projects. He grew up in the northwest as an avid hiker, skier, and sailer and attended

Washington State University studying computer science and business. His personal blog is at

http://www.adamchristian.com. He is currently employed by Slide, Inc.

ISAAC CLERENCIA is a software developer at eBox Technologies. Since 2001 he has been

involved in several free software projects, including Debian and Battle for Wesnoth. He, along

with other partners, founded Warp Networks in 2004. Warp Networks is the open source–

oriented software company from which eBox Technologies was later spun off. Other interests

of his are artificial intelligence and natural language processing.

JOHN D. COOK is a very applied mathematician. After receiving a Ph.D. in from the University

of Texas, he taught mathematics at Vanderbilt University. He then left academia to work as a

software developer and consultant. He currently works as a research statistician at M. D.

Anderson Cancer Center. His career has been a blend of research, software development,

318 A P P E N D I X

http://www.rbcs-us.com
http://www.adamchristian.com

consulting, and management. His areas of application have ranged from the search for oil

deposits to the search for a cure for cancer. He lives in Houston with his wife and four

daughters. He writes a blog at http://www.johndcook.com/blog.

LISA CRISPIN is an agile testing coach and practitioner. She is the coauthor, with Janet Gregory,

of Agile Testing: A Practical Guide for Testers and Agile Teams (Addison-Wesley). She works as the

director of agile software development at Ultimate Software. Lisa specializes in showing testers

and agile teams how testers can add value and how to guide development with business-facing

tests. Her mission is to bring agile joy to the software testing world and testing joy to the agile

development world. Lisa joined her first agile team in 2000, having enjoyed many years

working as a programmer, analyst, tester, and QA director. From 2003 until 2009, she was a

tester on a Scrum/XP team at ePlan Services, Inc. She frequently leads tutorials and workshops

on agile testing at conferences in North America and Europe. Lisa regularly contributes articles

about agile testing to publications such as Better Software magazine, IEEE Software, and Methods

and Tools. Lisa also coauthored Testing Extreme Programming (Addison-Wesley) with Tip House.

For more about Lisa’s work, visit http://www.lisacrispin.com.

ADAM GOUCHER has been testing software professionally for over 10 years. In that time he has

worked with startups, large multinationals, and those in between, in both traditional and agile

testing environments. A believer in the communication of ideas big and small, he writes

frequently at http://adam.goucher.ca and teaches testing skills at a Toronto-area technical college.

In his off hours he can be found either playing or coaching box lacrosse—and then promptly

applying lessons learned to testing. He is also an active member of the Association for Software

Testing.

MATTHEW HEUSSER is a member of the technical staff (“QA lead”) at Socialtext and has spent

his adult life developing, testing, and managing software projects. In addition to Socialtext,

Matthew is a contributing editor for Software Test and Performance Magazine and an adjunct

instructor in the computer science department at Calvin College. He is the lead organizer of

both the Great Lakes Software Excellence Conference and the peer workshop on Technical

Debt. Matthew’s blog, Creative Chaos, is consistently ranked in the top-100 blogs for

developers and dev managers, and the top-10 for software test automation. Equally important,

Matthew is a whole person with a lifetime of experience. As a cadet, and later officer, in the

Civil Air Patrol, Matthew soloed in a Cessna 172 light aircraft before he had a driver’s license.

He currently resides in Allegan, Michigan with his family, and has even been known to coach

soccer.

KAREN N. JOHNSON is an independent software test consultant based in Chicago, Illinois. She

views software testing as an intellectual challenge and believes in context-driven testing. She

teaches and consults on a variety of topics in software testing and frequently speaks at software

testing conferences. She’s been published in Better Software and Software Test and Performance

magazines and on InformIT.com and StickyMinds.com. She is the cofounder of WREST, the

Workshop on Regulated Software Testing. Karen is also a hosted software testing expert on

Tech Target’s website. For more information about Karen, visit http://www.karennjohnson.com.

C O N T R I B U T O R S 319

http://www.johndcook.com/blog
http://www.lisacrispin.com
http://adam.goucher.ca
http://xndev.blogspot.com
http://www.context-driven-testing.com/
http://informit.com
http://stickyminds.com
http://www.wrestworkshop.com/Home.html
http://searchsoftwarequality.techtarget.com/expert/KnowledgebaseBio/0,289623,sid92_cid1093127,00.html
http://www.karennjohnson.com

KAMRAN KHAN contributes to a number of open source office projects, including AbiWord (a

word processor), Gnumeric (a spreadsheet program), libwpd and libwpg (WordPerfect

libraries), and libgoffice and libgsf (general office libraries). He has been testing office software

for more than five years, focusing particularly on bugs that affect reliability and stability.

TOMASZ KOJM is the original author of Clam AntiVirus, an open source antivirus solution.

ClamAV is freely available under the GNU General Public License, and as of 2009, has been

installed on more than two million computer systems, primarily email gateways. Together with

his team, Tomasz has been researching and deploying antivirus testing techniques since 2002

to make the software meet mission-critical requirements for reliability and availability.

MICHELLE LEVESQUE is the tech lead of Ads UI at Google, where she works to make useful,

beautiful ads on the search results page. She also writes and directs internal educational videos,

teaches Python classes, leads the readability team, helps coordinate the massive postering of

Google restroom stalls with weekly flyers that promote testing, and interviews potential chefs

and masseuses.

CHRIS MCMAHON is a dedicated agile tester and a dedicated telecommuter. He has amassed a

remarkable amount of professional experience in more than a decade of testing, from telecom

networks to social networking, from COBOL to Ruby. A three-time college dropout and former

professional musician, librarian, and waiter, Chris got his start as a software tester a little later

than most, but his unique and varied background gives his work a sense of maturity that few

others have. He lives in rural southwest Colorado, but contributes to a couple of magazines,

several mailing lists, and is even a character in a book about software testing.

MURALI NANDIGAMA is a quality consultant and has more than 15 years of experience in

various organizations, including TCS, Sun, Oracle, and Mozilla. Murali is a Certified Software

Quality Analyst, Six Sigma lead, and senior member of IEEE. He has been awarded with

multiple software patents in advanced software testing methodologies and has published in

international journals and presented at many conferences. Murali holds a doctorate from the

University of Hyderabad, India.

BRIAN NITZ has been a software engineer since 1988. He has spent time working on all aspects

of the software life cycle, from design and development to QA and support. His

accomplishments include development of a dataflow-based visual compiler, support of

radiology workstations, QA, performance, and service productivity tools, and the successful

deployment of over 7,000 Linux desktops at a large bank. He lives in Ireland with his wife and

two kids where he enjoys travel, sailing, and photography.

NEAL NORWITZ is a software developer at Google and a Python committer. He has been

involved with most aspects of testing within Google and Python, including leading the Testing

Grouplet at Google and setting up and maintaining much of the Python testing infrastructure.

He got deeply involved with testing when he learned how much his code sucked.

ALAN PAGE began his career as a tester in 1993. He joined Microsoft in 1995, and is currently

the director of test excellence, where he oversees the technical training program for testers and

320 A P P E N D I X

various other activities focused on improving testers, testing, and test tools. Alan writes about

testing on his blog, and is the lead author on How We Test Software at Microsoft (Microsoft Press).

You can contact him at alan.page@microsoft.com.

TIM RILEY is the director of quality assurance at Mozilla. He has tested software for 18 years,

including everything from spacecraft simulators, ground control systems, high-security

operating systems, language platforms, application servers, hosted services, and open source

web applications. He has managed software testing teams in companies from startups to large

corporations, consisting of 3 to 120 people, in six countries. He has a software patent for a

testing execution framework that matches test suites to available test systems. He enjoys being

a breeder caretaker for Canine Companions for Independence, as well as live and studio sound

engineering.

MARTIN SCHRÖDER studied computer science at the University of Würzburg, Germany, from

which he also received his master’s degree in 2009. While studying, he started to volunteer in

the community-driven Mozilla Calendar Project in 2006. Since mid-2007, he has been

coordinating the QA volunteer team. His interests center on working in open source software

projects involving development, quality assurance, and community building.

DAVID SCHULER is a research assistant at the software engineering chair at Saarland University,

Germany. His research interests include mutation testing and dynamic program analysis,

focusing on techniques that characterize program runs to detect equivalent mutants. For that

purpose, he has developed the Javalanche mutation-testing framework, which allows efficient

mutation testing and assessing the impact of mutations.

CLINT TALBERT has been working as a software engineer for over 10 years, bouncing between

development and testing at established companies and startups. His accomplishments include

working on a peer-to-peer database replication engine, designing a rational way for

applications to get time zone data, and bringing people from all over the world to work on

testing projects. These days, he leads the Mozilla Test Development team concentrating on QA

for the Gecko platform, which is the substrate layer for Firefox and many other applications.

He is also an aspiring fiction writer. When not testing or writing, he loves to rock climb and

surf everywhere from Austin, Texas to Ocean Beach, California.

REMKO TRONÇON is a member of the XMPP Standards Foundation’s council, coauthor of

several XMPP protocol extensions, former lead developer of Psi, developer of the Swift Jabber/

XMPP project, and a coauthor of the book XMPP: The Definitive Guide (O’Reilly). He holds a

Ph.D. in engineering (computer science) from the Katholieke Universiteit Leuven. His blog can

be found at http://el-tramo.be.

LINDA WILKINSON is a QA manager with more than 25 years of software testing experience.

She has worked in the nonprofit, banking, insurance, telecom, retail, state and federal

government, travel, and aviation fields. Linda’s blog is available at http://practicalqa.com, and

she has been known to drop in at the forums on http://softwaretestingclub.com to talk to her

Cohorts in Crime (i.e., other testing professionals).

C O N T R I B U T O R S 321

http://blogs.msdn.com/alanpa
mailto:alan.page@microsoft.com
http://cci.org
http://oreilly.com/catalog/9780596157197/
http://el-tramo.be
http://practicalqa.com
http://softwaretestingclub.com

JEFFREY YASSKIN is a software developer at Google and a Python committer. He works on the

Unladen Swallow project, which is trying to dramatically improve Python’s performance by

compiling hot functions to machine code and taking advantage of the last 30 years of virtual

machine research. He got into testing when he noticed how much it reduced the knowledge

needed to make safe changes.

ANDREAS ZELLER is a professor of software engineering at Saarland University, Germany. His

research centers on programmer productivity—in particular, on finding and fixing problems

in code and development processes. He is best known for GNU DDD (Data Display Debugger),

a visual debugger for Linux and Unix; for Delta Debugging, a technique that automatically

isolates failure causes for computer programs; and for his work on mining the software

repositories of companies such as Microsoft, IBM, and SAP. His recent work focuses on

assessing and improving test suite quality, in particular mutation testing.

322 A P P E N D I X

C O L O P H O N

The cover image is from Getty Images. The cover fonts are Akzidenz Grotesk and Orator. The

text font is Adobe’s Meridien; the heading font is ITC Bailey.

	Table of Contents
	Preface
	How This Book Is Organized
	Part I, Beautiful Testers
	Part II, Beautiful Process
	Part III, Beautiful Tools

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 12
	Contributors
	Colophon

