
May/June
2009
Volume 2

CHAPTER 1
A SOA VIEW
OF TESTING

CHAPTER 2
AGILE TESTING
STRATEGIES:
EVOLVING WITH
THE PRODUCT

•

•

SOFTWARE TESTING
Testing strategies for complex environments:

Agile, SOA

EDITOR’S LETTER

p UNLESS YOU LIVE in a sci-fi novel,
there’s one rule of thumb for any new
place you go: some things are differ-
ent; some are the same. Usually, suc-
cess, fun or survival in that new place
depends upon how well you handle
the differences. In this issue of
SearchSoftwareQuality.com’s Soft-
ware Testing E-Zine, the new “places”
are a service-oriented architecture
(SOA) and an agile software develop-
ment environment.

Examining the ins and outs of soft-
ware testing in SOA environments in
“An SOA view of testing,” consultant
Mike Kelly focuses on the “subtle dif-
ferences.” What’s the same is that
testers here must start with the
basics. In SOA, the basics are connec-
tivity, basic capacity, and authoriza-
tion and authentication—not that dif-
ferent from other environments. The
level of complexity of data models,
however, is very different from that of
other architectures and requires some
new methods of testing.

While agile development requires
different testing methods than the
waterfall model, those differences lie
as much in human behavior as in
technology, according to consultant

Karen N. Johnson in “Agile testing
strategies: Evolving with the product.”
Agile is a more collaborative process
and calls for seizing “iterations as a
chance to evolve test ideas,” Johnson
writes. Fundamental testing tasks, like
exploratory and investigative testing,
stay the same, but the productivity of
completing those jobs can increase.

Johnson and Kelly discuss the finer
points of testing in agile and SOA,
respectively, in this issue’s articles.
They also describe revelations they’ve
had while working in those environ-
ments and best practices they’ve
learned and continue to use.

The theme of connectivity runs
through these discussions of SOA and
agile testing, as the former focuses on
system connectivity and the latter on
human collaboration. Both approach-
es, when done well, can help develop-
ment and IT organizations achieve
lower costs and better software. �

JAN STAFFORD

Executive Editor
jstafford@techtarget.com

2 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

1Testing in the new
worlds of SOA and agile

mailto:jstafford@techtarget.com

p SERVICE-ORIENTED architectures
(SOAs) are stealthily becoming ubiq-
uitous. Large and small enterprises
leverage them to integrate wide
arrays of disparate systems into a
cohesive whole. Most companies and
project teams that implement SOA do
so to reduce the cost, risk and difficul-
ty of replacing legacy systems, acquir-
ing new businesses or extending the
life of existing systems.

Testing a SOA requires a solid
understanding of the SOA design and
underlying technology. Yet, SOA’s
complexity makes figuring out the
functional purpose of the SOA diffi-
cult and choosing and implementing
the right testing tools and techniques
to use with it more difficult.

SOA is not simply Web services.
According to iTKO (the makers of the
TechTarget award-winning SOA test-
ing tool LISA), nine out of 10 Web
services also involve some other type
of technology. In addition, they state
that most testing for SOA isn’t done
at the user interface level. It’s done
using either specialized tools or as
part of an integration or end-to-end

test. This means people testing SOA
need to be comfortable with varied
and changing technology, need to
understand the various models for
SOA, and should be familiar with
the risks common to SOA.

WHY SERVICE-ORIENTED
ARCHITECTURES?
Large companies typically turn to
SOA because their existing systems
can’t change fast enough to keep up
with the business. Because business
operations don’t exist in discrete or
finite units, there are a lot of depend-
encies built into existing systems.
SOA is an attempt to separate the
system from the business operations
it supports. This allows companies to
incrementally build or decommission
systems and minimizes the impact of
changes in one system to changes in
another.

Implementing a SOA removes
the requirement of direct integration,
which results in business operations
that are easier to understand. That
translates into a more testable system

3 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

CHAPTER 1

1A SOA view of testing
The complexity of a service-oriented architecture can
complicate testing and make choosing and implementing
the right testing tools more difficult. BY MICHAEL KELLY

overall. Over time, this makes it
easier to support a broader technolo-
gy base, which in turn makes it easier
to acquire and integrate new systems,
extend the life of existing systems
and replace legacy systems.

There are a number of different
model architectures for implementing
SOA, including publish and subscript
(often called “pub/sub”), request
and reply, and synchronous versus
asynchronous. In addition, they can
be implemented in a broad range
of technologies, including message-
oriented middleware (MOM),
simple HTTP posts with DNS routing,
Web services, MQ series, JMS (or
some other type of queuing system)
and even files passed in batch
processes.

If you’re testing a SOA you need
to understand the implementation
model and technologies involved,
because these typically combine to
give you some common features of
a SOA. These features often become
a focal point for your testing. They
commonly include:

� Transformation and mapping:
As data moves through a SOA, it’s
often transformed between data
formats and mapped to various
standard or custom data schemes.

� Routing: The path information
takes as it moves through a SOA
is often based on business rules
embedded at different levels of
the architecture.

� Security: SOAs often use stan-

dards such as application-oriented
networking (AON), WS-Security,
SAML, WS-Trust, WS-SecurityPolicy,
or other custom security schemes for
data security as well as authorization
and authentication.

� Load balancing: SOAs are often
designed to spread work between
resources to optimize resource
utilization, availability, reliability
and performance.

� Translation: As data moves
through a SOA, it’s often converted
or changed based on business rules
or reference data.

� Logging: For monitoring and
auditing, SOAs often implement
multiple forms of logging.

� Notification: Based on the model
of SOA implemented, different notifi-
cations may happen at different
times.

� Adapters: Adapters (both custom
and commercial) provide APIs to
access data and common functions
within a SOA.

FIGURING OUT WHAT TO TEST
The first thing you need to do when
you start figuring what to test for your
SOA is to develop (or start develop-
ing) your test strategy. When I’m
faced with a new project and I’m not
sure where to start, I normally pull
out the Satisfice Heuristic Test Strate-
gy Model and start there. Each sec-

4 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

http://www.satisfice.com/tools/satisfice-tsm-4p.pdf
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf

AutomatedQA
(978) 236-7900

Download
TestComplete

FREE
www.testcomplete.com

Agile development moves fast, too fast
for manual testing alone. In an agile
environment you need automated
testing tools to succeed. Check out
TestComplete from AutomatedQA.
TestComplete lets anyone automate tests
for the widest range of technologies like
Web, Ajax, Windows, .NET, Java, Flash, Flex
and Silverlight. TestComplete has won four
Jolt awards, been voted Best Testing Tool
and yet it's still a�ordable.

TestComplete's extensive feature set and
great price has long made it the choice of
expert testers. Now version 7 adds
script-free test creation and a simpli�ed
user interface so new testers can get
productive fast. TestComplete 7's easy
automated testing lets your entire QA team
test more, test faster and ship on time with
con�dence.

Feeling the
 Agile Rush?

Test Faster
 With TestComplete7TestComplete7TestComplete7
The Easiest
TestComplete Ever!

Script-Free Test Creation
Simple to learn and easy to extend

Download and Customize Extensions
Pre-built and custom add-ons make
complex tests point and click easy

Unmatched Technology Support
New technology? No problem! Rapid
support for the latest software

Price and Performance Leader
Unsurpassed features and a low price
to make you smile.

Start Testing In Minutes!
Download TestComplete now and start
testing today.

tion of the Satisfice Heuristic Test
Strategy Model contains things you’ll
need to consider as you think about
your testing:

� Test techniques: What types of
testing techniques will you be doing?
What would you need to support
those types of testing in terms of
people, processes, tools, environ-
ments or data? Are there specific
things you need to test (like security,
transformation and mapping, or load
balancing) that may require special-
ized techniques?

� Product elements: What product
elements will you be covering in your
testing? What’s your scope? To what
extent will different data elements be
covered in each stage? Which busi-
ness rules? Will you be testing the
target implementation environment?
How much testing will you be doing
around timing issues? How will you
measure your coverage against those
elements, track it and manage it from
a documentation and configuration
management perspective?

� Quality criteria: What types of
risks will you be looking for while test-
ing? Will you focus more on the busi-
ness problem being solved or the risks
related to the implementation model
or technology being used? Will you
look at performance at each level?
What about security? How will you
need to build environments, integrate
with service providers, or find tools
to do all the different types of testing
you’ll need to do?

� Project environment: What fac-
tors will be critical to your success
and the success of the in-house team
as you take over this work? How will
you take in new work, structure your
release schedules, or move code
between teams, phases or environ-
ments? What are the business drivers
to moving to a SOA and how will
those come into play while you’re
testing?

Recognize that as you think of
these questions, it’s a matrix of con-
cerns. A decision (or lack of decision)
in each of these categories affects the
scope of the decisions in the other
three. Therefore, you will most likely
find yourself approaching the problem
from different perspectives at differ-
ent times.

Once you have an understanding
of what features you’ll be testing and
you know which quality criteria you’ll
be focused on, you’re ready to dig in.
Don’t be surprised if in many ways
your testing looks like it does on a
non-SOA project. SOA isn’t magic,
and it doesn’t change things all that
much. However, I’ve found that there
are some subtle differences in where
my focus is when I’m working on a
SOA project.

COVER THE BASICS AS SOON
(AND AS OFTEN) AS YOU CAN
The first area to focus on is typically
connectivity. Establishing a successful
round-trip test is a big step early in a
SOA implementation. The first time
connecting is often the most difficult.

6 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

Once you have that connectivity,
don’t lose it. Build out regression
tests for basic connectivity that you
can run on a regular basis. While a
SOA evolves, it is easy to break con-
nectivity without knowing it. If you

break it, you’ll want to find out as
soon as possible so it’s easier to
debug any issues.

Next you may want to look at basic
capacity. Capacity at this level can be
anything from basic storage to con-
nection pooling to service throughput.
I’ve been on a couple of projects
where these elements weren’t looked
at until the end, only to find that we
had to requisition new hardware at
the last minute or end up spending
days changing configuration settings
on network devices and Web servers.
Figure out what you think you’ll need
early on, and run tests to confirm
those numbers are accurate and
consistent throughout the project.

In addition, don’t put off testing for
authorization and authentication until
you get into the target environment.
I’ve worked on several teams where

development and test environments
had different security controls than
production, which led to confusion
and rework once we deployed and
tried to run using an untested permis-
sions scheme. If you use LDAP in pro-
duction, use it when testing. If you’re
handling authorization in your SOAP
request, do it consistently through
your testing, even if you think it’s
easier to disable it while doing
“functional” testing.

FOCUS ON THE DATA
Service-oriented architectures
aren’t just cleaner interfaces between
systems, they are also complex data
models. As data moves through a
SOA it’s translated, transformed,
reformatted and processed. That
means you’ll have a lot of tests
focused on testing data. These tests
typically make up the bulk of the
regression test beds I’ve seen on
projects implementing a SOA.

Tests focused around testing data
in an SOA typically happen at the
component level and leverage stubs
and harnesses to allow for testing as
close as possible to where the change
takes place. This simplifies debugging
and allows for more granular tracking
of test coverage (based on a schema,
mapping document or set of business
rules). SOA teams are constantly
thinking about regression testing for
these tests. Small changes can have
a large impact on the data, so these
tests become critical to refactoring
or when adding new features.

For many teams, these tests can

7 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

As data moves
through a SOA it’s
translated, transformed,
reformatted and
processed. That
means you’ll have
a lot of tests focused
on testing data.

be part of the continuous integration
process. While building these regres-
sion test beds can be very easy, once
you have libraries of XML test cases
lying around, maintaining them can be
very time consuming. That makes a
team’s unit testing strategy a critical
part of the overall testing strategy.
What will be tested at the unit level,
component level, integration level and
end-to-end? Starting as close to the
code as possible, automating there,
and running those tests as often as
possible is often the best choice for
data-focused testing.

UNDERSTAND
YOUR USAGE MODELS
When I test a SOA, I develop detailed
usage models. I originally used usage
models solely when doing perform-
ance testing, but I’ve also found them
helpful when testing SOAs. When I
build usage models, I use the user
community modeling language
(UCML) developed by Scott Barber.
UCML allows you to visually depict
complex workloads and performance
scenarios. I’ve used UCML diagrams
to help me plan my SOA testing, to
document the tests I executed, and to
help elicit various performance, secu-
rity and capacity requirements. UCML
isn’t the only way you can do that; if
you have another modeling technique
you prefer, use that one.

Usage models allow us to create
realistic (or reasonably realistic) test-
ing scenarios. The power behind a
modeling approach like this is that it’s
intuitive to developers, users, man-

agers and testers alike. That means
faster communication, clearer
requirements and better tests. At
some level, every SOA implementa-
tion needs to think about perform-
ance, availability, reliability and
capacity. Usage models help focus the
testing dialogue on those topics (as
opposed to just focusing on function-
ality and data).

When testing for SOA performance,
I focus on speed, load, concurrency
and latency. My availability and relia-
bility scenarios for SOA often focus
on failover, application and infrastruc-
ture stress, fault tolerance and opera-
tions scenarios. And conversations
around capacity often begin with a
basic scaling strategy and spiral out
from there (taking in hardware, soft-
ware, licensing and network concerns
as appropriate). Because the scope is
so broad, effective usage modeling
requires balancing creativity and
reality.

DEMONSTRATING
YOU CAN IMPLEMENT
BUSINESS PROCESSES
At the end of your SOA implementa-
tion, you will have delivered some-
thing that implements or supports a
business process. If the bulk of your
testing up to that point has focused
on various combinations of service-
level processes and data functions,
then your end-to-end acceptance
tests will focus on those final imple-
mented business processes. These
tests are often manual, utilize the end
systems (often user interface sys-

8 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

http://www.perftestplus.com/articles/ucml.pdf
http://www.perftestplus.com/articles/ucml.pdf
http://www.perftestplus.com/articles/ucml.pdf

tems), and are slow and costly. All the
testing outlined up to this point has
been focused on making this testing
more efficient and effective.

If you’ve successfully covered the
basics, early and often, then you
should have few integration surprises
while doing your end-to-end testing.
When you deploy the end-to-end
solution, you don’t want to be debug-
ging basic connectivity or authoriza-
tion/authentication issues. If you’ve
successfully covered the data at the
unit and service level, then you won’t
have thousands of tests focused on
subtle variations of similar data.
Instead, you’ll have tests targeted at
high-risk transactions, or tests based
on sampling strategies of what you’ve

already tested. If you’ve done a good
job of facilitating discussions around
performance, availability, reliability
and capacity, then you likely already
reduced most of the risk around those
quality criteria and have clear plans
for migration to production.

If you’re testing your first SOA
implementation, take some time to
learn more about the underlying tech-
nologies and implementation models.
Once you’re comfortable with what’s
being done, start looking at the tools
that are available to support your
testing needs. There are many great
commercial and open source tools
available, and there is always the
option to create your own tools as
needed. Just make sure you’re select-
ing tools to fit the types of testing you
want to do. Many tools will do more
than you need, or may force you to do
something in a way that’s not optimal
for your project.

Finally, remember that whatever
you’re building now will change over
time. Make sure you’re working close-
ly with the rest of the team to ensure
regression capabilities have been
implemented in the most effective
and cost-effective ways possible.
When you come back a year later to
make a small change, you don’t want
to have to re-create all the work
you’ve done the first time around. �

9 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

Make sure you’re
selecting tools to fit
the types of testing
you want to do. Many
tools will do more than
you need, or may force
you to do something
in a way that’s not
optimal for your
project.

ABOUT THE AUTHOR:

MICHAEL KELLY is currently the director of application development for Interactions. He also
writes and speaks about topics in software testing. Kelly is a board member for the Association
for Software Testing and a co-founder of the Indianapolis Workshops on Software Testing, a
series of ongoing meetings on topics in software testing. You can find most of his articles and
blog on his website, www.MichaelDKelly.com.

http://www.michaeldkelly.com/
http://web.interactions.net/

Making the decision to outsource the development
of your critical application is not easy. There are
pros and cons, but, once the decision is made, it
is imperative that the quality you paid for and
expected is the quality you receive.

Ask yourself these questions:

1.	 What is the quality of the code that has been
developed?

2.	 Is it too complex, making it unmaintainable
and unreliable?

3.	 How thoroughly was it tested prior to
delivery back to you?

4.	 Are you convinced that the most complex
areas of your critical application are being
tested?

5.	 Is the code quality and test coverage
trending in a positive direction?

If you do outsource, you owe it to yourself, your
organization, and most importantly your customers
to know the answers to these questions.

McCabe IQ provides those answers using
advanced static and dynamic analysis technology
to help you focus your attention on the most
complex and risky areas of your code base.

McCabe IQ’s breakthrough visualization
techniques, enterprise reporting engine, and
executive dashboard provide you with a complete
picture of what is being produced.

It’s time you made the most of your outsourcing
investment and benefitted from our 30+ years of
software quality research and development.

Don’t just think your code is good.
Be sure of it, with McCabe IQ.

http://www.mccabe.com/techtarget
www.mccabe.com

CHAPTER 2

p YOU CAN ACHIEVE successful
testing in agile if you seize upon itera-
tions as a chance to learn and evolve
test ideas. This is the art of software
testing strategy in agile. The chal-
lenge: How can testing be planned
and executed in the ever-evolving
world of the iterative agile methodol-
ogy? This article discusses some of
philosophies, pros, cons and realities
of software testing in the agile itera-
tive process.

One aspect of an agile software
development project that I believe
benefits testers is working with itera-
tions. Iterations provide a preview
opportunity to see new features and a
chance to watch features evolve. The
early iterations are such sweet times
to see functionality flourish. I feel as
though I’m able to watch the process,
to see the growth and the maturity of
a feature and a product. I feel more a
part of the process of development
with an iterative approach to building

than I do when I’m forced to wait
through a full waterfall lifecycle to see
an allegedly more polished version of
an application.

But there is an opposing point of
view that sees the iterative approach
as frustrating. Early iterations could

be viewed as a hassle; the fact that
features will evolve and morph is
potentially maddening if a tester
thinks their test planning could
become obsolete. What if the fea-
tures morph in such a way as to crush
the test planning and even crush the
spirit of a waterfall-oriented tester? I

11 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

1Agile testing
strategies: Evolving
with the product
Software testing in an agile environment is the art of
seizing iterations as a chance to learn and evolve test ideas.
BY KAREN JOHNSON

Iterations provide
a preview opportunity
to see new features
and a chance to watch
features evolve.

think it’s a matter of making a mind
shift.

Early iterations of functionality
provide time to learn and explore.
Learning is opportunity. While I’m
learning the product, I’m devising
more ideas of how to test and what to
test. Cycles of continuous integration
are chances to pick up speed with
manual testing and fine-tune test
automation.

The iterative process also gives me
time to build test data. I’m able to
take advantage of the time. I also see
my learning grow in parallel to the
maturity of a feature. As I’m learning,
and the functionality is settling down,
I can’t help but feel that both the
product as a whole and I as a tester
are becoming more mature, robust
and effective. I’m learning and devis-
ing more ideas of how to test and
what to test and potentially building
test data to test. We’re growing
together.

Cem Kaner outlined the approach
of investigatory testing, and Scott
Ambler discussed it in an article
called “Agile Testing Strategies”.
Having been through a couple of agile
projects before reading Scott’s article,
it was interesting to find myself nod-
ding in agreement throughout. One of
Kaner’s ideas on investigative testing
that I especially like and have experi-
enced is finding both “big picture”
and “little picture” issues.

I enjoy the early iterations to
stomp about an application so that
I can understand it. I like seeing my
knowledge escalate to the point
where I’m asking good, solid ques-

tions that help the development
process move along. I especially enjoy
asking development a question and
receiving a pensive look from a devel-
oper, telling me I’ve just found a bug
in code that I’ve not even seen or that
hasn’t even been built—talk about
finding your bugs upstream. Frankly,

there’s also a greater chance that my
own ideas will be incorporated, since
agile gives me the opportunity to pro-
vide feedback about features early
enough that my ideas can actually
make it into a product. This is far
more likely with agile than if the prod-
uct was fully baked before I had my
first whiff.

I’ve long loathed the idea that a fat
stack of requirements could give me
everything I needed. “Here you go,”
I’ve been told. “Now you can write
those test cases you testers build,
because if you only test to require-
ments, the requirements and specifi-
cations are all you need.” I want to
holler, “No, it isn’t so!” An hour at the
keyboard has more value to me than
a day reading specifications. I want
time with an application, I want time
to play, and I want time to learn. And
the agile iterative process gives me
that.

12 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

I’ve long loathed
the idea that a fat
stack of requirements
could give me
everything I needed.

http://www.ddj.com/architect/196603549?pgno=4

.PUTTING STRATEGY INTO
PRACTICE: OUTLINE TEST IDEAS
Review the user stories created for
upcoming features. Read each story
closely, envisioning the functionality.
Write questions alongside the user
stories; if possible, record your ques-
tions on a wiki where your comments
and the user stories can be viewed by
the team. Sharing your early thoughts
and questions on a team wiki gives
the entire team a chance to see the
questions being asked. Raising more
questions and conversations helps the
entire team’s product knowledge
evolve. Also record your test ideas.
This gives the developers a chance to
see the test ideas that you have. Mis-
communications have an early chance
for clarification.

When I write my early test ideas,
they’re usually formatted as a bullet-
ed list—nothing glamorous. I raise my
questions with the team and the
developers on team calls or at times I
arrange for that purpose. I openly
share my test ideas and hunches at
any possible time that I can. I tell
every developer I work with that my
work is not and does not need to be
mysterious to them. I share as much
as anyone is willing to listen to or
review as early and as often as I can.
To be honest, often the developers are
busy and ask for less than I would pre-
fer, but that’s OK.

I sometimes mix how I record my
test ideas, but the recording isn’t the
point. The idea is to be constantly
thinking of new and inventive ways to
find a break in the product. Find a way
to record test ideas. Be prepared to

record an idea at any time by having
a notebook, index cards, a voice
recorder—whatever the medium,
make the process easy.

GAIN A SENSE OF PRIORITY
After reviewing all of the user stories,
develop a sense of priority within
each story and then across all the sto-
ries. What do you want to test first?
What have you been waiting to see?
And what test idea is most likely to
evoke the greatest issue? These are
the first tests.

The theory behind the first-strike
attack is the old informal risk analysis.
Risk analysis doesn’t go away with
agile.

When the next iteration comes, I’m
not in pause mode. I know where I
want to be, I know which tests I want
to run. I don’t have any long test
scripts to rework because of changes.
I expect change. As I test these early
releases, I take notes. I adjust my
ideas as I learn the application. I find
that some early test ideas no longer
make sense, no longer apply. I gener-
ate new ideas as I learn with each
iteration.

USE SWEEP TESTING
In 2007, I blogged about my approach
to exploratory testing through a con-
cept I call sweep testing. The practice
is one of accumulating test ideas,
often using Excel. I could say I build
test ideas into a central repository,
but the term “repository” has such a
heavy sound to it, when what I really

13 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

http://www.testingreflections.com/node/view/6243

http://www.itko.com

15 SOFTWARE TESTING MAY/JUNE 2009

mean is that I take the time to collect
those scraps of test ideas and early
hunches and pool them together in
one place. As the early iterations con-
tinue and my test ideas come to me at
random, unplanned times, I’ve jotted
down ideas on index cards in my car,
as voice recordings on my BlackBerry
or as notes on the team wiki.

As the project continues, early test
ideas fall by the wayside and new
ideas come into place. Taking the time
to list my ideas in one place helps me
rethink ideas and gain that revised,
better informed sense of order and
importance. Once I’ve built my list
and my list sweeps across all the
functionality, I’m ready. I feel pre-
pared, and I can launch into testing
rapidly once the build hits.

I function as the only tester on proj-
ects fairly often, so I’m able to use my
concept of sweep testing without
needing to share, do version control
or address the issues that come into

play when I’m not testing alone. On
projects where I have had other
testers, I have used the concept of
sweep testing to assign different
worksheets or sections of a sheet
from the same Excel file and had no
issues with the divide-and-conquer

approach. I write in bulleted lists. The
lists are ideas, not steps or details.

Now it’s not just the product that
has evolved through the iterations—I
have evolved as a tester as well.

COLLABORATIVE SPIRIT:
PEOPLE WORKING TOGETHER
The shortage of people, money and
time, and the twisted situations each
of these can present—agile doesn’t
cure all the blues. So it’s best not to be
too naïve, to think a process change
or a change in approach is going to
suddenly resolve all the murky events
and behaviors that can happen on a
project.

I still believe that the most powerful
advantage on any project is people
working together who want to work
together. This is one of the core prin-
ciples of the context-driven school
of testing.

Bret Pettichord discusses several
ways to build a collaborative spirit
in his presentation “Agile Testing
Practices.” The concepts of pairing
together and no one developing spe-
cialized knowledge are two constructs
that I find especially insightful. I just
seem to work alone more often than
not and have had fewer chances per-
sonally to put some of his collabora-
tive test team concepts into practice.
But as the solo tester, I can certainly
relate to and find his thoughts on test-
ing “half-baked” code highly practical.

A small benefit I’ve seen in working
with scrum has been a side effect of
the daily scrum meeting that I hadn’t
expected. The frequency of the meet-

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

The idea is to be
constantly thinking
of new and inventive
ways to find a break
in the product.

http://www.io.com/~wazmo/papers/agile_testing_challenges.pdf
http://www.io.com/~wazmo/papers/agile_testing_challenges.pdf
http://www.context-driven-testing.com/
http://www.context-driven-testing.com/

ings helps to drive a friendly familiari-
ty. Given the short duration of the
meetings, people seem less inclined
to open a laptop and ignore each

other as they check emails and the
daily news. The forced frequency
seems to help. A more practical
aspect is hearing from team members
what activities people have been
pulled into, how time has been spent
or misspent. People have a place to
explain how hours have been burnt
over disruptive, unexpected and
expensive tasks. These daily meetings
bring people together; they build a
sense of team and, for that reason
alone, add great value.

In his “Agile Test Strategies and
Experiences” article, Fran O’Hara talks
about “independent testers” needing

to be integrated with the team. This
concept resonates deeply with me;
I have long felt it is the team and not
a single stakeholder who will know
what value I have brought to the proj-
ect. As an independent consultant,
this has been interesting; I often have
a stakeholder who owns my contract,
but it is the team that knows what I
deliver.

CONCLUSION
While some of the test practices in
agile may be different than working
on a waterfall project, the fundamen-
tal ideas in testing still apply. Explor-
atory and investigative testing pro-
duce more bugs that matter in a
timelier manner than detailed test
scripts can provide. Risk-based think-
ing helps steer testing to find the
defects that matter most. Testing will
always be affected by the reality that
time at the end game is tight, and the
best way to cope with tight time is to
be flexible. And people who want to
work together can produce great
products, so finding ways to build
healthy, constructive relationships
is likely the most valuable strategy
of all. �

16 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

These daily meetings
bring people together;
they build a sense
of team and, for that
reason alone, add
great value.

ABOUT THE AUTHOR:

KAREN JOHNSON is an independent software test consultant with 14 years of experience in
software testing and software test management. She views software testing as an intellectual
challenge and believes in the context-driven school of testing. Karen frequently speaks at soft-
ware testing conferences and participates in software testing workshops, in addition to author-
ing articles in software testing publications.

http://newsweaver.ie/qualtech/e_article000847213.cfm?x=b11,0,w
http://newsweaver.ie/qualtech/e_article000847213.cfm?x=b11,0,w

q Learn More and Download TestComplete Free

About AutomatedQA: AutomatedQA has been making award-winning soft-
ware products for quality assurance and software development worldwide
since 1999.

AutomatedQA’s flagship product is TestComplete, the automated soft-
ware testing solution that’s easy to use and affordable for any size team.
TestComplete makes testing fast and simple for all Windows software,
including Web, .NET, Java, Windows Desktop, Flash/Flex, Ajax and Sil-
verlight.

TestComplete’s easy script-free keyword testing and unified interface
enable testers to learn just one product and automate the full range of test
types including functional testing, load testing, distributed client/server
testing and unit testing for Windows and Web.

17 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

FROM OUR SPONSOR

http://ad.doubleclick.net/clk;214691062;16442062;v?http://www.automatedqa.com
http://ad.doubleclick.net/clk;214691113;16442062;s?http://www.automatedqa.com/lp/tc-ez-tt-agile

q Improved Software Testing Using McCabe IQ Coverage Analysis

q More Complex = Less Secure: Miss a Test Path and You Could Get Hacked

qUsing Code Quality Metrics in Management of Outsourced
Development and Maintenance

About McCabe Software, Inc.: McCabe Software provides Software Quality
Management and Software Change & Configuration Management solutions
worldwide. “McCabe IQ” is used to analyze and visualize the quality and
test coverage of mission, life, and business critical applications, utilizing a
comprehensive set of advanced software metrics including the McCabe-
authored Cyclomatic Complexity metric. Our configuration management
solution, “McCabe CM”, utilizes exclusive Integrated Difference technology
to manage software changes faster and more efficiently, ensuring quality
throughout the Application Lifecycle. McCabe Software has offices in the
United States, distribution worldwide, and can be found online at
www.mccabe.com.

18 SOFTWARE TESTING MAY/JUNE 2009

FROM OUR SPONSOR

http://ad.doubleclick.net/clk;213943548;16442062;d?http://www.mccabe.com
www.mccabe.com
http://ad.doubleclick.net/clk;213943675;16442062;e?http://www.bitpipe.com/detail/RES/1236988956_984.html
http://ad.doubleclick.net/clk;213943675;16442062;e?http://www.bitpipe.com/detail/RES/1236988956_984.html
http://ad.doubleclick.net/clk;213943633;16442062;y?http://www.bitpipe.com/detail/RES/1236988398_990.html
http://ad.doubleclick.net/clk;213943589;16442062;i?http://www.bitpipe.com/detail/RES/1236987802_907.html

q iTKO Whitepaper: Service Virtualization in Enterprise Application
Development

q iTKO Whitepaper: Minimize IT Outsourcing Risk with Collaborative
Quality

q Free Analyst Report from Butler Group: LISA 4.6 Technology Audit

About iTKO: iTKO helps our customers transform the software development
and testing lifecycle for greater quality and agility in an environment of con-
stant change. iTKO’s award winning LISA(tm) product suite can dramatically
lower quality assurance costs, shorten release cycles, reduce risks, and
eliminate critical development and testing constraints by virtualizing IT
resources to provide accessibility, capacity and security across interdepend-
ent teams. LISA enables test, validation, and virtualization solutions opti-
mized for distributed, multi-tier applications that leverage SOA, BPM, inte-
gration suites, and ESBs. iTKO customers include eBay, American Airlines,
Allstate, Time Warner, SwissRe, Bank of America and the U.S. Department
of Defense. Visit http://www.itko.com.

19 SOFTWARE TESTING MAY/JUNE 2009

a
EDITOR’S

LETTER

a
CHAPTER 1

A SOA VIEW
OF TESTING

a
CHAPTER 2

AGILE TESTING
STRATEGIES:

EVOLVING
WITH THE
PRODUCT

FROM OUR SPONSOR

http://ad.doubleclick.net/clk;214690605;16442062;x?http://www.itko.com
http://www.itko.com
http://ad.doubleclick.net/clk;214690826;16442062;c?http://www.itko.com/site/resources/techaudit.jsp
http://ad.doubleclick.net/clk;214690776;16442062;g?http://www.itko.com/site/resources/collaborativequality.jsp
http://ad.doubleclick.net/clk;214690776;16442062;g?http://www.itko.com/site/resources/collaborativequality.jsp
http://ad.doubleclick.net/clk;214690713;16442062;x?http://www.itko.com/site/resources/servicevirtualization.jsp
http://ad.doubleclick.net/clk;214690713;16442062;x?http://www.itko.com/site/resources/servicevirtualization.jsp

