This article is provided courtesy of STQE, the software testing and quality engineering magazine.
Management & Teams

WE SPEND CONSIDERABLE TIME

D E L I v E R I N G learning the technical skills of our
positions. We make sure we are

practicing good testing

U NWE LCO M E techniques. We keep up to
date on the latest technolo-

gy. But what about the people skills of our position? What

N EWS about communication? We sometimes forget that we spend
much of our working time communicating with people about

the state of the software we’re testing. And quite often, the

T news we have to give is not welcome. Learning to deliver un-

favorable news to someone gracefully and respectfully is an

important skill for any profes-

D EVE Lo P E RS sional, but is an especially im-
portant one for quality assur-

ance. How well you present a

Knowing how—and when—to report a defect

BY KAREN JOHNSON defect to the developer can

impact when a defect is re-
solved—or whether it is re-
solved at all. Deliver the information abruptly or inappropriately, and you run the risk of alien-
ating a person or creating project hot spots that aren’t needed. Deliver news too passively, and
your report may be discarded. Communication is crucial to QA—and while you cannot control

the reaction and response from someone, you can control the manner in which you deliver news.

I worked as a technical writer for seven years and gained an
appreciation for being on the receiving side of criticism and ed-
its. Those experiences culminated in some guidelines to follow
on how to present news, especially unwelcome news, to some-
one else at work. Some basic rules you learned early in life ap-
ply: Don’t cry wolf (that is, don’t report an issue before you
know the facts). Don’t whine. Don’t invent stories. Don’t exag-
gerate (that is, don’t make a defect sound more important than
it is). Beyond that, there are three key factors to consider when
you tell a developer about a defect:

= Calibration

= Timing

= Method

Calibration

Calibrate your conversation to the importance of the defect. w

Learn to prioritize. Every defect you find is not worthy of a = 3keys to presenting a defect
conversation. It is not uncommon for a large or complex system » Handling difficult encounters

to have a backlog of hundreds of bugs. You cannot and should

www.stgemagazine.com SEPTEMBER/OCTOBER 2002 STQE 35

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

not turn every bug into a conversation or
review session with the developer. When
a bug does require a conversation, adjust
your presentation and your demeanor to
suit the severity of the defect.

The two most important factors
about a defect are: How likely is it to oc-
cur, and what is the impact? Know the
answer to these two questions when you
follow up with the developer. Use the
most likely scenario when describing
how and under what conditions a cus-
tomer will encounter the defect. At the
same time, keep in mind that if you make
an issue sound too far-fetched and un-
likely to occur, the developer will ap-
proach the issue with a lack of enthusi-
asm or disregard it completely. Make it a
habit to know the impact and likelihood
of a defect, and include that information
when reporting it.

If the defect is important (if it presents
a significant impact or is highly likely to
occur), try to meet with the developer in
person. Be prepared. State the defect and
the test case that exposed it. Give the de-
veloper time to digest the information.
Answer questions. While your general
mannerism does not need to be deathly
serious, I recommend avoiding jokes or
other light-hearted chatter when dis-
cussing a serious issue. Be willing to ex-
plore similar test conditions the develop-
er might suggest. Think of and treat the
two of you as a team on a mission to re-
solve the issue. Don’t just drop the bug at
the developer’s door and walk away. The
more serious the defect, the more willing
you should be to invest time testing and
fine-tuning your findings.

For minor bugs, email or a casual
mention are more appropriate. For in-
stance, you might tell a developer in a
hallway passing or in the microwave
line in the lunchroom that you found a
few minor defects and recorded them in
the bug system, but do not need to dis-
cuss them. Or mention you uncovered
some annoyance defects while testing
other conditions. This communicates
the fact that you know which defects
are unimportant and that you were not
wasting valuable testing time; you just
noticed these defects along your testing
path.

At one company where I worked, we
often ate lunch together in a small
kitchen. We would talk about coding ob-
stacles, defects found, and customer ex-
pectations in a less formal setting. Occa-
sionally, we would joke about some of
the defects we found. By having a casual

setting to comment about nuisance bugs,
I was able to convey to the team that I
knew the difference between important
flaws and minutiae. And by casually dis-
cussing some of the minor bugs in the
system, we were able to laugh together—
which is one of the best team-building
activities you can participate in.

How you report a defect affects how
the development staff and the team per-
ceive you. You don’t want to informally
train the team to believe that instead of
finding the important flaws first, you
find unimportant and insignificant de-
fects on a regular basis. Thoughts like
“Is she presenting us with another nit-
picking problem?” or “Has he been test-
ing a scenario or test condition that only
a testing person would run?” can be
translated into team members thinking
you are wasting a developer’s time or
you aren’t testing the important condi-
tions. This doesn’t mean you shouldn’t
record or report nuisance defects, it just
means you need to adjust your delivery
of the defect in relation to its impor-
tance.

Timing

There is an old expression that timing is
everything. You cannot change the tim-
ing of when you find a bug, but you can
control the timing of your delivery. You
will find that people are in different
moods based on timing. A person’s mood
affects how they receive your message.
Two particularly sensitive times are the
end of the day and the end of a project.
Make the timing work for you and your
bug by choosing the best possible time to
deliver your news.

It does not take much insight to see
that when someone is packing up and
leaving for the day, you won’t receive the
same patience and consideration you
would have earlier in the day. Can it
wait? That depends on the importance of
the bug and the timing of the next re-
lease. Whenever possible, honor the per-
son’s time commitments. Do not trail
someone out the door with reports of a
defect.

Ideally, we’d find all the defects earlier
in the project and give developers as
much time to fix them as possible. But
real life is much different. Bugs often ap-
pear right up until the last day (and be-
yond). At the end of a project, develop-
ers’ tensions run high and the stakes for
finding and repairing bugs are also high.
If you find a bug of show-stopping quali-
ty, you have a serious and difficult mes-

36 STQE SEPTEMBER/OCTOBER 2002 www.stgemagazine.com

sage to deliver. Handle it accordingly.
Know your facts. Be prepared to en-
counter a difficult reaction, including
questions as to why the bug was found
“so late.”

One time, I had to report news of a
serious defect late in the project. I
brought the defect straight to the R&D
manager to give him time to deal with
the ripple effect of the defect. He de-
manded to know why the bug was found
so “late in the game.” I had no choice
but to admit the truth: it was a test con-
dition I had not covered earlier. I hadn’t
understood the requirements well
enough to plan the test condition sooner.
I took my “beating” for a late find. After
all, everyone makes mistakes (quality as-
surance people should know this better
than anyone because of all the issues we
see), and we are no exception. We make
mistakes when we fail to run a test condi-
tion, or when we skip a test condition, or
when we fail to understand the require-
ments and pass a test that should fail.
There are many opportunities for anyone
to make a mistake. That’s another reason
why it’s important to deliver criticism
with tact, respect, and grace—because
you may be on the receiving side of criti-
cism from the same group of people
someday.

Method

You have several choices when it comes
to delivering your bug: personal conver-
sation, voicemail, email, and automated
notification are the most common. You
should choose your method of communi-
cation based on the importance and tim-
ing of the bug.

= Personal Conversation If the de-
fect warrants taking the time, whenever
possible, T opt to talk face-to-face with
someone. In person, people are more
likely to behave as they really are and
not hide behind emails or phone tag.
Personal conversations also give the re-
ceiver an opportunity to ask lots of
questions—and provide the deliverer a
chance to listen and learn. Since it is
well known that bugs live in clusters,
you can ask a developer if there are oth-
er places in the code that might pose
similar issues. Together you can brain-
storm. A developer can help you assess
what other testing you may want to de-
lay until the bug is resolved and the
code is updated. Every conversation you
have with a developer gives you an op-
portunity to build rapport. In person, a

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

developer can see not just the defect you
are reporting, but that you are sincerely
concerned about the product, take your
role seriously, and are trying to help, not
that you’re gloating about finding some-
one’s mistake.

= Voice mail Use voice mail to leave a
personal message to a developer regard-
ing a bug that you normally would have
discussed with them personally, but for
whatever reason could not. For example,
suppose you find a significant defect and
enter the bug into your bug tracking soft-
ware. The bug tracking system provides
email notification of a bug, but the devel-
oper has already left for the day. A voice
mail with some detail and reference to
the bug shows you tried to talk with
them in person. Let them know when
you will be available to discuss it.

= Email In a world of telecommuting
and flexible hours, where not everyone
has the luxury of talking directly, email
provides another method of communica-
tion. But use it carefully. Wording can
seem quite terse in email. The ability to
copy people or to send the same message
to multiple people is convenient and
tempting, but don’t send the first notifi-
cation of a significant defect to anyone
other than the developer. Avoid copying
people on emails for political reasons.
Consider how you would react if your
boss was copied on an email notifying
you of an error you had made. Give the
developer the first notification.

= Automatic notification If you
work with a system that automatically
sends email notifications to developers,
your decision will be 1) is it necessary to
contact the developer in addition to the
email notification, and 2) if so, when and
how?

Communications That
Go Awry
What if your communication does not go
smoothly? What if the developer begins
to spew frustration, to argue, or to
launch an attack against you, the messen-
ger? Will they take their frustrations out
on you? Perhaps, if you let them. But
quality assurance must never shrink
away from difficult encounters. The job
function actually ensures you will have
some, if not many, tough conversations.
One time when I delivered the news of
a critical bug, the developer exploded—at
himself, not me. I listened to him curse,

Delivery Dos and Don'

Respect the other person

Respect the developer and the developer's work. Consider how it would feel to be on
the receiving side of your report. Think about the Golden Rule: Do unto others as you
would have them do unto you.

Consider your timing

Having a newly found and important defect reported in a team meeting can be difficult
for a developer. Respect each developer's right to be informed and do not blind-side
team members in group settings.

State the defect factually

Know your bug. How did you get there? What does the impact of the bug mean? How
likely do you think it is that a customer will encounter the same defect? If they don't fix
the bug, is there a workaround? By being able to remain factual, you will avoid ac-
cusatory behavior, gain respect that you know what you are talking about, and expedite
getting the bug fixed. Another Golden Rule is think before you speak. Be prepared with
bug details when delivering news of an important bug.

Reproduce the defect before reporting

A common phrase among developers is “If | can't replicate the bug, | can't fix it.” | don't
believe this phrase. I've worked with developers who will take an inkling of a bug and
pursue it admirably. But not all do. The likelihood of getting a bug fixed that you cannot
replicate is seriously diminished. Give your defect a chance of getting resolved by being
able to reproduce it before you report it.

Don’t accuse

Stay clear of making bugs a personal issue. The developer may have put the bug into
the code, but do not accuse the developer on a personal level. Talk about the bug in the
third person: the bug does this, the bug occurs when ... versus when you coded this or
when you did not unit test that. Stay focused on the bug and not the developer.

Don't dramatize; bad bugs are recognizable on their own

Do not dramatize the importance of the bug. A bug’s importance is generally easily un-
derstood by the developer and the team once the word gets around. If the bug prevents
other testing from continuing, just state the fact clearly, and preferably only once. See if
the developer has a workaround. Ask when you can expect the fix. But do not get in-
volved in “the sky is falling” language.

Don’t whine

Even though testers are paid to find bugs, sometimes finding a bug especially late in the
cycle is a headache and an inconvenience. This may be the third build in two days and a
bug is preventing additional testing from moving forward. Nonetheless, avoid complain-
ing about retesting and about delayed schedules. Avoid adding to the frustration level
of the developer and yourself. This conversation is about the code and about a flaw with
the code. Stay focused on the bug’s significance and not the impact the defect had on
your day or will have on your testing schedule.

www.stgemagazine.com SEPTEMBER/OCTOBER 2002 STQE 37

http://www.stqemagazine.com/

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

pound the desk, and slam the office door.
I stayed silent and calm. I knew the anger
was about his disappointment with his
code and not about me. Do not take reac-
tions personally, unless they are intended
to be personal. Once his storm had
passed, I reminded him of all the solid
code he had built. I reminded him that he
was one of the best developers I had ever
worked with (which was true). This is the
right time to step away from being factual
and to be human. You can feel sorry that
the developer is frustrated. You can offer
sympathy that he may need to work late
to fix the bug right away. You can em-
pathize with her frustrations, but you
cannot apologize for doing your job. We
talked in detail about the test conditions
we would cover when the code was ready.
When I left his office, I felt we were a
team and that we had a plan to resolve
the issue together.

What a different result the conversa-
tion could have had if T had taken his re-
action personally. What if I had reacted to
his initial response? What if I left when he
was frustrated and angry? What if I left
him with the defect and no plan for
retesting? I’'m tired of the expression win-
win, but not tired of how it feels when
you can reach a win-win conclusion with
someone. Negative situations actually
provide an opportunity to bond together
when handled well; and conversely, can
provide an opportunity for division and
finger pointing when handled poorly.

Sometimes it helps to think psycho-
logically. Consider a person’s emotional
intelligence quotient (EQ). Emotional in-
telligence may be best described as a per-
son’s ability to react and respond appro-
priately to a variety of situations.
Emotional intelligence is a trait that you
hope the other person possesses when
you critique his work; but not everyone
has a high EQ. Some people rant, rave,
and even swear. Again, you can’t control
someone else, but you can be responsible
for your behavior in every conversation.

Do not provide an audience for the
over-reactor. This might include not
telling the person the news when other
people are around; limiting the amount
of time you spend listening to their reac-

tion; or not starting or participating in an
email sparring contest. Be patient when
detailing your findings and when listen-
ing to the developer’s response. You, like
other professionals, do not have to listen
to swearing or name-calling. If the per-
son overreacts this poorly, excuse your-
self calmly without stomping away. Be
patient, but do not tolerate poor behav-
ior. Remember that you train people in-
formally each day in how they can or
cannot treat you.

It may be a good sign when a develop-
er becomes defensive and starts listing all
the unit testing she did perform. The de-
veloper wants you to recognize that she
put reasonable effort into her work. Re-
member that frustration on hearing about
a bug can be a sign of pride: the person
who wants to defend his work is a person
who is invested in his work. I have some-
times pulled out a test plan to share how
many tests the code has passed. I worked
with one developer who was so intent
and so concerned about his work that I
knew his frustrations were with himself. I
would sometimes remind him that every-
one makes mistakes, and that I knew that
because of the bugs I had seen. Then I
would remind him that every bug found
by a customer that I had not found was
really a bug of mine. Quality assurance
makes mistakes, too.

One of the hardest developers to de-
liver unwelcome news to is the developer
who will dig into the new defect, cor-
rupting her current schedule of work.
Depending on your development process,
developers may be required to get the go-
ahead to work on a defect from a project
manager or development manager. If
you’re working with a developer who
will become distracted with the most re-
cent bug reported, you may need to re-
mind him that bugs found late in the
project schedule may have to be autho-
rized by someone before coding changes
are allowed.

Fortify Yourself

Not every conversation goes smoothly. If
you still find some encounters difficult
and realize you aren’t as thick-skinned as
you find necessary, work toward making

38 STQE SEPTEMBER/OCTOBER 2002 www.stgemagazine.com

yourself less vulnerable to on-the-job
frustrations and disagreements that come
your way. Use these thoughts to strength-
en yourself:

= Quality assurance does not put defects
in the code; quality assurance only finds
the defects.

= A customer could call with the same
defect; you are giving the developer a
chance to fix a defect before it is found in
the field.

= When a developer blows off steam in
your presence, remember she is probably
frustrated by her own work, not neces-
sarily by you or your work.

= Even if you could have found the de-
fect sooner, you still found the defect and
that is what you are paid to do.

Summing Up

Work on your communication skills with
as much earnestness as your technical
skills. Consider the other person. Remem-
ber to be respectful. Consider how you
present your findings. Remember to have
solid facts. Develop skills at handling dif-
ficult conversations. Learn not to take
work criticism personally. And finally, if
you deliver frustrating and oftentimes un-
welcome news with respect and consider-
ation, remember you deserve the same
professional courtesy in return. STQE

Karen Jobnson works as a business sys-
tems consultant for Baxter Healthcare
Corporation on a rapidly expanding
global Web site used internally by Bax-
ter. She has more than seventeen years
of experience in computer software; for
the past ten years she has been involved
in quality assurance. She lives in a sub-
urb of Chicago and can be reached at
knj_karen@yahoo.com.

STOE magazine is produced by
STQE Publishing, a division of
Software Quality Engineering.

http://www.stqemagazine.com/

