By Karen N. Johnson

Multi—user testing can be fun. That’s true because multi-user apps
are straightforward to test. Bugs in this category appear

either dramatically with splashy data-
base errors, or quietly as the applica-
tion and database handle the test con-
ditions gracefully and the test cycle
ends without incident.

In either case, multi-user testing
typically involves relatively short test
cycles because the number of objects
that need to be tested in multiple user
scenarios has, in my experience, not
been large. Also, the errors tend to be
less debatable than, say, errors uncov-
ered during functional testing. For
these, opinions can vary about what
the application should do or what the
requirements truly meant. Conversely,
there are no arguments that a dead-
lock error is unacceptable.

Overlooked, but Essential
Multi-user testing involves testing an
application while simulating two differ-
ent users executing the same transac-
tion at the same time for the purpose of
discovering application, data and data-
base errors. Multi-
user testing is a
form of testing fre-
quently not talked
about and often
overlooked. One

reason this cycle gets
forgotten is that over
the past decade, rela-

aph'by Anna Sirotina

tional database products have matured,
and errors in this category may be less
likely to occur than they did several
years ago. But database software such as
MySQL has come to market, and new
releases of databases require testing, just
as new software releases require testing.
Clearly, multi-user testing remains nec-
essary.

As many applications have moved to
the Web, focus has shifted to perform-
ance testing, for good reason. We've
been focused on dozens, hundreds
and even thousands of users, not just
two. The perceived likelihood that two
users would be accessing and updating
the same object at the same time is low,
low enough to drop multi-user testing
off the list of testing to accomplish.
But errors from this test cycle reveal
that the impact of errors remains high;
we don’t need to think about dozens of
users, we just need two users to create
the dreaded deadlock.

Multi-user testing is often mistaken
for inexpensive performance testing.
Since performance testing and multi-
user testing both (sometimes) focus on
high-frequency, high-volume objects,
the confusion about multi-user testing
persists. But looking at the same

Karen N. Johnson is a software testing con-
sultant in the Chicago area.

objects doesn’t mean the testing focus
is the same; multi-user testing is
focused on the concurrency of transac-
tions and how concurrency and lock-
ing are handled.

Staggered Timing

Tests in the multi-user cycle involve
adding, updating or deleting an object
at the same time or with staggered tim-
ing. Let’s break this description down
with an some example. Imagine a Web
application that allows users to man-
age internal documentation for a com-
pany: a library management system.
This system allows internal users to
access company documents and,
depending on their permissions,
enables them to add, update or delete
documents. The application includes
functionality to allow administrative
users to add users and user groups.
This gives us multiple transactions to
work with.

Now imagine in the course of a
workday, two administrative users
attempt to create a new user group at
the same time. One user adds the new
user group with no error and contin-
ues on. The second user encounters a
database error referencing something
about a unique constraint. Unlikely to
happen? Perhaps. But it’s not unlikely
that two users would be adding or edit-
ing documents; in fact, at a large com-
pany with a heavily used library man-
agement system, dozens of users are

likely hitting the same transactions at
almost exactly the same time all day
long.

Identifying Tests

You can choose from a couple of ways
to plan what objects to test. First, look
at the database in your production
environment when you make this

-
‘f

Identifying Race
Conditions And
Deadlocks In
Your Apps Can
Leave You

Smelling Like
A Rose

L

MULTI-USER TESTING

assessment—which means you might
need a database administrator who has
access to production. Unless develop-
ment and test environments contain a
recent copy of production data, you
won’t get the same assessment as pro-
duction. Even with a production copy
in test, you can’t be sure the DBA set-
ting up your dev or test environment
didn’t trim any tables to save space.
A practical way to plan
testing is to use your knowl-
edge of the application.
What objects are users like-
ly to be “touching” all day
long with high frequency?
What are the fastest-grow-
ing tables in the database?
What objects do those
tables contain?
When planning your
testing program, remember
that you don’t need to test
every object. Instead,
you're looking for high fre-
quency and high volume;
high frequency because
these objects are being
used the most and are
therefore more likely to
encounter errors. High vol-

ume is a likely target
because these are the
fastest-growing objects,

which also likely makes

them high frequency. Timestamps and
version numbers can serve as refer-
ence points to determine frequency.
In the case of volume, you're looking
for high table counts.

What is high? Compared to other
objects in the database, these are the
objects being added and updated
more often. If you're conducting per-
formance testing, you might already
be acutely aware of what objects gen-
erate the most traffic. Use Table 1 to
plan multi-user testing.

Once you identify the objects, think
about what action is being used the
most often. Are the objects being
added, updated or deleted? A simple
point I've learned in executing this
testing is that once I've added an
object, I test edit and then delete. This
makes the testing move quickly since

L. & S

e

there’s no additional work in setting
up objects; I cycle through add, then
edit, and my final test even cleans up
my test data as I delete as the last test.

Pair Up or Go Solo?

You can test with two people pairing
up to cycle through various add,
update and delete
Alternately, I execute this type of test-

transactions.

If you compare a

deadlock to traveling down

a highway that uses a tunnel that

allows only one car at
a time, you can

envision the lock.

ing alone, preferring to arrange two
fairly equal class PCs as I manage two
keyboards and execute transactions. If
you choose to go it alone, don’t forget
to log in to each PC as a different user.
After all, the purpose is to simulate
two users at the same time—not the
same user on two different worksta-
tions (which, by the way, is another
form of testing.) For equal-class PCs,
the same timing is easier to accom-
plish with PCs of equivalent processing
speeds.

What to Watch For

Deadlocks. Unique index constraints.
Lost edits. Application errors. If multi-
user testing didn’t sound exciting at
first blush, consider these errors in
production and you might be willing
to allocate a test cycle to multi-user

testing. If your testing has been more
black-box focused or if you haven’t
included database considerations in
your testing previously, some of these
errors might be new to you. Let’s
examine each error type one at a time.

A deadlock occurs when two process-
es are locked and neither transaction
completes. Deadlocks in production
can wreak havoc if two users lock a
table. If you compare a
deadlock to traveling down
a highway that uses a tunnel
that allows only one car at a
time, you can envision the
lock. As two cars compete to
pass through the entrance
first, neither allowing the
other to pass, the lock is set.
Add a few more cars com-
ing along, like transactions
continuing on a Web site,
and you can envision a
queue growing with frus-
trated users (or drivers).
Deadlocks are ugly.

There are several lock-
ing schemas available to
prevent deadlocks,
more than one database
vendor on the relational
database market so there
different locking

schemas and concurrency
controls. In fact, there are
several fascinating problems outlined
as stories you can find on Wikipedia,
beginning with the entry on dead-
locks.

and

are

Some of the stories are well
known, the most popular and the start
of the collection is the dining philoso-
phers’ problem (see Edsger W.
Dijkstra’s work). One type of problem
and its related teaching story is
referred to as the producer-consumer
problem, which also brings up the
point of race conditions.

Race conditions are a core considera-
tion in deadlocks. Like the tunnel
analogy, many traffic issues wouldn’t
take place without a race condition.
Rush hour is a race condition. The
same takes place on the database as
the timing of transactions becomes an
essential factor.

This is one reason I test both same-

-

time and staggered timings. Staggered
timing can catch errors when a
process or lock hasn’t been released
but a user can’t view the lock

able to add the record, and the second
user should be notified of an existing
entry of the same value. If the timing

access the same record at the same
time, with admin users accessing a

user record, and each user updating
the user record. For the first

from the application front TABLE 1: MULTI-USER TEST PLANNING FORM user to access the record, the
end. Testing add, update and edits will be saved, but the

Same Timing

Staggered Timing

second user might not

obtain the necessary lock on

the record for their edits to
be saved. In the worst case,

delete transactions with
slightly staggered timings — zqq
can catch these errors. If the

lock hasn’t been released, Change
the next transaction will Delete

encounter an error.

In my experience in a
decade of multi-user testing, I'm more
likely to encounter deadlocks with the
same precise timing on the creation of
an object. This is why I'd rather oper-
ate two keyboards than perform pair
testing; I can get to the exact same
precise moment by my own two hands
better than any other way. Plus, I have
the patience to execute tests multiple
times until I can find the timestamps
that make me convinced I've covered
the test.

The second most frequent error I
encounter is deleting the same object
with slightly staggered timing.

In terms of practical knowledge
and more immediately tangible ideas
for testing, you might look to know
more information about the specific
database you’re working with. Are you
working with Oracle, Sybase, SQL
Server, Informix, MySQL or another
database? Each has different imple-
mentations available, so it’s worth-
while to talk with your DBA about the
concurrency controls that have been
implemented.

If you can’t get the information you
need, test to find a deadlock and then
you'll likely get the support and infor-
mation needed—a harsh but effective
approach. As most of the database ven-
dor products have matured, I haven’t
uncovered as many issues as I did years
ago, but multi-user testing still is a test
cycle likely to harvest bugs, and since
the impact can be significant, multi-
user testing remains a risk area worthy
of investigation.

Unique index constraints are database
errors that occur when two users
attempt to add the same information
at the same time. One user should be

L™ .. A

- ¥

=t SR

is sequential, the user who attempts to
add the same record receives an error
stating a record of the same value
already exists. In some cases, such as
with MySQL, unless the database has
been defined as a transactional data-
base, all inserts for the table may be

Knowing exactly
which edit is
being made by
each user helps to
verify that both
edits made it into

the database.

halted. These issues are sometimes
referred to as primary key or unique key
ervors.

A challenge with lost edits is
whether or not the user is informed.
Consider this example: Two users

the user’s edits are lost and
the wuser isn’t informed.

Essentially, the transaction is
lost.

This is why, in practice, when I test
multi-user editing, I make a point to
know what edit each user makes, and
the edits made are not the same. In
the case of the user record, I might
edit the last name field, adding a 1 to
the end of the existing name as admin
user 1, and a 2 to the end of the exist-
ing name as admin user 2. In short,
knowing exactly which edit is being
made by each user helps to verify that

both edits made it into the database.

Too Much Information?

Another test idea to keep in mind
while executing multi-user tests is
security. Here’s a test you can pick up
at the same time as multi-user testing.

Review the database errors dis-
played to find the behind-the-scenes
information of an application. Look
for database table names, admin
account information or directory
path information being given away on
error messages that share too much
information. If your application can
trap for database errors, a design
decision needs to be made about how
much information should be revealed
through error messages.

“When two trains approach each
other at a crossing, both shall come to
a full stop and neither shall start up
again until the other has gone.”

This Wikipedia entry relating to
deadlocks, which quotes a statute
passed by the Kansas state legislature
early in the 20th century, is an excel-
lent way to visualize the importance of
multi-user testing. And now you have
a few techniques to help you imple-
ment it. X

o By
..

g o

P Pl

& lrl'.h il = ‘-.1!

§

